238
Views
34
CrossRef citations to date
0
Altmetric
Review

Therapeutic hypothermia in experimental models of focal and global cerebral ischemia and intracerebral hemorrhage

, , &
Pages 1255-1268 | Published online: 09 Jan 2014

References

  • Bigelow WC. Methods for inducing hypothermia and rewarming. Ann. NY Acad. Sci.80, 522–532 (1959).
  • Fay T. Observations on generalized refrigeration in cases of severe cerebral trauma. Assoc. Res. Nerv. Ment. Dis. Proc.24, 611–619 (1945).
  • Rosomoff HL. Hypothermia and cerebral vascular lesions. I. Experimental interruption of the middle cerebral artery during hypothermia. J. Neurosurg.13(4), 244–255 (1956).
  • Onesti ST, Baker CJ, Sun PP, Solomon A. Transient hypothermia reduces focal ischemic brain injury in the rat. Neurosurgery29(3), 369–373 (1991).
  • Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab.7(6), 729–738 (1987).
  • O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann. Neurol.59(3), 467–477 (2006).
  • Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild–moderate hypothermia in attenuating cerebral ischemic damage. J. Cereb. Blood Flow Metab.27(12), 1879–1894 (2007).
  • Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med.346(8), 557–563 (2002).
  • Shankaran S, Laptook AR, Ehrenkranz RA et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med.353(15), 1574–1584 (2005).
  • The World Health Organization. Neurological Disorders: a Public Health Approach. Who Press (2007).
  • Hertog H, van der Worp B, van Gemert M, Dippel D. Therapeutic hypothermia in acute ischemic stroke. Expert Rev. Neurother.7(2), 155–164 (2007).
  • Nurse S, Corbett D. Direct measurement of brain temperature during and after intraischemic hypothermia: correlation with behavioral, physiological, and histological endpoints. J. Neurosci.14(12), 7726–7734 (1994).
  • Green EJ, Dietrich WD, van Dijk F et al. Protective effects of brain hypothermia on behavior and histopathology following global cerebral ischemia in rats. Brain Res.580(1–2), 197–204 (1992).
  • Colbourne F, Corbett D. Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil. Brain Res.654(2), 265–272 (1994).
  • Colbourne F, Corbett D. Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection. J. Neurosci.15(11), 7250–7260 (1995).
  • Natale JA, D’Alecy LG. Protection from cerebral ischemia by brain cooling without reduced lactate accumulation in dogs. Stroke20(6), 770–777 (1989).
  • Leonov Y, Sterz F, Safar P, Radovsky A. Moderate hypothermia after cardiac arrest of 17 minutes in dogs. Effect on cerebral and cardiac outcome. Stroke21(11), 1600–1606 (1990).
  • Leonov Y, Sterz F, Safar P et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J. Cereb. Blood Flow Metab.10(1), 57–70 (1990).
  • Sterz F, Safar P, Tisherman S, Radovsky A, Kuboyama K, Oku K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged cardiac arrest in dogs. Crit. Care Med.19(3), 379–389 (1991).
  • Weinrauch V, Safar P, Tisherman S, Kuboyama K, Radovsky A. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs. Stroke23(10), 1454–1462 (1992).
  • Meloni BP, Zhu H, Knuckey NW. Is magnesium neuroprotective following global and focal cerebral ischaemia? A review of published studies. Magnes. Res.19(2), 123–137 (2006).
  • Zhu H, Meloni BP, Bojarski C, Knuckey MW, Knuckey NW. Post-ischemic modest hypothermia (35 °C) combined with intravenous magnesium is more effective at reducing CA1 neuronal death than either treatment used alone following global cerebral ischemia in rats. Exp. Neurol.193(2), 361–368 (2005).
  • Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke20(1), 84–91 (1989).
  • Buchan AM, Xue D, Slivka A. A new model of temporary focal neocortical ischemia in the rat. Stroke23(2), 273–279 (1992).
  • Agnati LF, Zoli M, Kurosawa M et al. A new model of focal brain ischemia based on the intracerebral injection of endothelin-1. Ital. J. Neurol. Sci.12(3 Suppl. 11), 49–53 (1991).
  • Wang CX, Yang Y, Yang T, Shuaib A. A focal embolic model of cerebral ischemia in rats: introduction and evaluation. Brain Res. Brain Res. Protoc.7(2), 115–120 (2001).
  • Zhao W, Ginsberg MD, Prado R, Belayev L. Depiction of infarct frequency distribution by computer-assisted image mapping in rat brains with middle cerebral artery occlusion. Comparison of photothrombotic and intraluminal suture models. Stroke27(6), 1112–1117 (1996).
  • van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain130(Pt 12), 3063–3074 (2007).
  • Stein DG. Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci.24(7), 386–391 (2001).
  • Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents. J. Anesth.19(2), 150–156 (2005).
  • Ozden S, Isenmann S. Neuroprotective properties of different anesthetics on axotomized rat retinal ganglion cells in vivo.J. Neurotrauma21(1), 73–82 (2004).
  • Proescholdt M, Heimann A, Kempski O. Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res.904(2), 245–251 (2001).
  • Werner C, Reeker W, Engelhard K, Lu H, Kochs E. [Ketamine racemate and S-(+)-ketamine. Cerebrovascular effects and neuroprotection following focal ischemia]. Anaesthesist46(Suppl. 1), S55–S60 (1997).
  • Scholler K, Zausinger S, Baethmann A, Schmid-Elsaesser R. Neuroprotection in ischemic stroke – combination drug therapy and mild hypothermia in a rat model of permanent focal cerebral ischemia.Brain Res.1023(2), 272–278 (2004).
  • Zausinger S, Westermaier T, Baethmann A, Steiger HJ, Schmid-Elsaesser R. Neuroprotective treatment paradigms in neurovascular surgery – efficacy in a rat model of focal cerebral ischemia. Acta Neurochir. Suppl.77, 259–265 (2001).
  • Doerfler A, Schwab S, Hoffmann TT, Engelhorn T, Forsting M. Combination of decompressive craniectomy and mild hypothermia ameliorates infarction volume after permanent focal ischemia in rats. Stroke32(11), 2675–2681 (2001).
  • Kollmar R, Henninger N, Bardutzky J, Schellinger PD, Schabitz WR, Schwab S. Combination therapy of moderate hypothermia and thrombolysis in experimental thromboembolic stroke – an MRI study. Exp. Neurol.190(1), 204–212 (2004).
  • Nagel S, Su Y, Horstmann S et al. Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res.1188, 198–206 (2008).
  • Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke30(12), 2752–2758 (1999).
  • Dirnagl U. Bench to bedside: the quest for quality in experimental stroke research. J. Cereb. Blood Flow Metab.26(12), 1465–1478 (2006).
  • Donnan GA. The 2007 Feinberg lecture: a new road map for neuroprotection. Stroke39(1), 242 (2008).
  • Andaluz N, Zuccarello M, Wagner KR. Experimental animal models of intracerebral hemorrhage. Neurosurg. Clin. N. Am.13(3), 385–393 (2002).
  • Kawai N, Kawanishi M, Okauchi M, Nagao S. Effects of hypothermia on thrombin-induced brain edema formation. Brain Res.895(1–2), 50–58 (2001).
  • Kawai N, Nakamura T, Nagao S. Effects of brain hypothermia on brain edema formation after intracerebral hemorrhage in rats. Acta Neurochir. Suppl.81, 233–235 (2002).
  • MacLellan C, Shuaib A, Colbourne F. Failure of delayed and prolonged hypothermia to favorably affect hemorrhagic stroke in rats. Brain Res.958(1), 192–200 (2002).
  • MacLellan CL, Davies LM, Fingas MS, Colbourne F. The influence of hypothermia on outcome after intracerebral hemorrhage in rats. Stroke37(5), 1266–1270 (2006).
  • MacLellan CL, Girgis J, Colbourne F. Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats. J. Cereb. Blood Flow Metab.24(4), 432–440 (2004).
  • Orakcioglu B, Becker K, Sakowitz OW et al. MRI of the perihemorrhagic zone in a rat ICH model: effect of hematoma evacuation. Neurocrit. Care8(3), 448–455 (2008).
  • Herweh C, Juttler E, Schellinger PD et al. Evidence against a perihemorrhagic penumbra provided by perfusion computed tomography. Stroke38(11), 2941–2947 (2007).
  • Fingas M, Clark DL, Colbourne F. The effects of selective brain hypothermia on intracerebral hemorrhage in rats. Exp. Neurol.208(2), 277–284 (2007).
  • Schaller B, Graf R. Hypothermia and stroke: the pathophysiological background. Pathophysiology10(1), 7–35 (2003).
  • Ferrand-Drake M, Friberg H, Wieloch T. Mitochondrial permeability transition induced DNA-fragmentation in the rat hippocampus following hypoglycemia. Neuroscience90(4), 1325–1338 (1999).
  • Tsuchiya D, Hong S, Suh SW, Kayama T, Panter SS, Weinstein PR. Mild hypothermia reduces zinc translocation, neuronal cell death, and mortality after transient global ischemia in mice. J. Cereb. Blood Flow Metab.22(10), 1231–1238 (2002).
  • Dong H, Moody-Corbett F, Colbourne F, Pittman Q, Corbett D. Electrophysiological properties of CA1 neurons protected by postischemic hypothermia in gerbils. Stroke32(3), 788–795 (2001).
  • Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow Metab.23(5), 513–530 (2003).
  • Schwab S, Georgiadis D, Berrouschot J, Schellinger PD, Graffagnino C, Mayer SA. Feasibility and safety of moderate hypothermia after massive hemispheric infarction. Stroke32(9), 2033–2035 (2001).
  • Wagner KR, Zuccarello M. Local brain hypothermia for neuroprotection in stroke treatment and aneurysm repair. Neurol. Res.27(3), 238–245 (2005).
  • Steiner T, Friede T, Aschoff A, Schellinger PD, Schwab S, Hacke W. Effect and feasibility of controlled rewarming after moderate hypothermia in stroke patients with malignant infarction of the middle cerebral artery. Stroke32(12), 2833–2835 (2001).
  • Berger C, Xia F, Kohrmann M, Schwab S. Hypothermia in acute stroke – slow versus fast rewarming an experimental study in rats. Exp. Neurol.204(1), 131–137 (2007).
  • Nakamura T, Miyamoto O, Yamagami S, Hayashida Y, Itano T, Nagao S. Influence of rewarming conditions after hypothermia in gerbils with transient forebrain ischemia. J. Neurosurg.91(1), 114–120 (1999).
  • Nakane M, Kubota M, Nakagomi T, Tamura A, Hisaki H, Ueta N. Rewarming eliminates the protective effect of cooling against delayed neuronal death. Neuroreport12(11), 2439–2442 (2001).
  • Li J, Luan X, Lai Q et al. Long-term neuroprotection induced by regional brain cooling with saline infusion into ischemic territory in rats: a behavioral analysis. Neurol. Res.26(6), 677–683 (2004).
  • Mack WJ, Huang J, Winfree C et al. Ultrarapid, convection-enhanced intravascular hypothermia: a feasibility study in nonhuman primate stroke. Stroke34(8), 1994–1999 (2003).
  • Steinberg GK, Ogilvy CS, Shuer LM et al. Comparison of endovascular and surface cooling during unruptured cerebral aneurysm repair. Neurosurgery55(2), 307–314; discussion 314–315 (2004).
  • Taniguchi T, Morikawa E, Mori T, Matsui T. Neuroprotective efficacy of selective brain hypothermia induced by a novel external cooling device on permanent cerebral ischemia in rats. Neurol. Res.27(6), 613–619 (2005).
  • Cheng H, Shi J, Zhang L, Zhang Q, Yin H, Wang L. Epidural cooling for selective brain hypothermia in porcine model. Acta Neurochir. (Wien)148(5), 559–564; discussion 564 (2006).
  • Noguchi Y, Nishio S, Kawauchi M, Asari S, Ohmoto T. A new method of inducing selective brain hypothermia with saline perfusion into the subdural space: effects on transient cerebral ischemia in cats. Acta Med. Okayama56(6), 279–286 (2002).
  • Hagioka S, Takeda Y, Takata K, Morita K. Nasopharyngeal cooling selectively and rapidly decreases brain temperature and attenuates neuronal damage, even if initiated at the onset of cardiopulmonary resuscitation in rats. Crit. Care Med.31(10), 2502–2508 (2003).
  • Clark DL, Colbourne F. A simple method to induce focal brain hypothermia in rats. J. Cereb. Blood Flow Metab.27(1), 115–122 (2007).
  • Xue D, Huang ZG, Smith KE, Buchan AM. Immediate or delayed mild hypothermia prevents focal cerebral infarction. Brain Res.587(1), 66–72 (1992).
  • Colbourne F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model. J. Cereb. Blood Flow Metab.20(12), 1702–1708 (2000).
  • Kollmar R, Schabitz WR, Heiland S et al. Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia: an MRI study. Stroke33(7), 1899–1904 (2002).
  • Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK. Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J. Neurosurg.94(1), 90–96 (2001).
  • Ren Y, Hashimoto M, Pulsinelli WA, Nowak TS Jr. Hypothermic protection in rat focal ischemia models: strain differences and relevance to “reperfusion injury”. J. Cereb. Blood Flow Metab.24(1), 42–53 (2004).
  • Kollmar R, Blank T, Han JL, Georgiadis D, Schwab S. Different degrees of hypothermia after experimental stroke: short- and long-term outcome. Stroke38(5), 1585–1589 (2007).
  • Hoesch RE, Geocadin RG. Therapeutic hypothermia for global and focal ischemic brain injury – a cool way to improve neurologic outcomes. Neurologist13(6), 331–342 (2007).
  • Thornhill J, Corbett D. Therapeutic implications of hypothermic and hyperthermic temperature conditions in stroke patients. Can. J. Physiol. Pharmacol.79(3), 254–261 (2001).
  • Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc. Brain Metab. Rev.4(3), 189–225 (1992).
  • Minamisawa H, Smith ML, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann. Neurol.28(1), 26–33 (1990).
  • Reith J, Jorgensen HS, Pedersen PM et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet347(8999), 422–425 (1996).
  • Cabanac A, Briese E. Handling elevates the colonic temperature of mice. Physiol. Behav.51(1), 95–98 (1992).
  • DeBow S, Colbourne F. Brain temperature measurement and regulation in awake and freely moving rodents. Methods (San Diego, Calif.)30(2), 167–171 (2003).
  • Schwab S, Spranger M, Aschoff A, Steiner T, Hacke W. Brain temperature monitoring and modulation in patients with severe MCA infarction. Neurology48(3), 762–767 (1997).
  • Karaszewski B, Wardlaw JM, Marshall I et al. Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke. Ann. Neurol.60(4), 438–446 (2006).
  • Barber PA, Hoyte L, Colbourne F, Buchan AM. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke35(7), 1720–1725 (2004).
  • Colbourne F, Sutherland GR, Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci.19(11), 4200–4210 (1999).
  • Coimbra C, Boris-Moller F, Drake M, Wieloch T. Diminished neuronal damage in the rat brain by late treatment with the antipyretic drug dipyrone or cooling following cerebral ischemia. Acta Neuropathol.92(5), 447–453 (1996).
  • He Z, Yamawaki T, Yang S, Day AL, Simpkins JW, Naritomi H. Experimental model of small deep infarcts involving the hypothalamus in rats: changes in body temperature and postural reflex. Stroke30(12), 2743–2751; discussion 2751 (1999).
  • Abraham H, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A. Filament size influences temperature changes and brain damage following middle cerebral artery occlusion in rats. Exp. Brain Res.142(1), 131–138 (2002).
  • Li F, Omae T, Fisher M. Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke30(11), 2464–2470; discussion 2470–2471 (1999).
  • Zhao Q, Memezawa H, Smith ML, Siesjo BK. Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament. Brain Res.649(1–2), 253–259 (1994).
  • Buchan A, Pulsinelli WA. Hypothermia but not the N-methyl-d-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J. Neurosci.10(1), 311–316 (1990).
  • DeBow SB, Clark DL, MacLellan CL, Colbourne F. Incomplete assessment of experimental cytoprotectants in rodent ischemia studies. Can. J. Neurol. Sci.30(4), 368–374 (2003).
  • Vahedi K, Hofmeijer J, Juettler E et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol.6(3), 215–222 (2007).
  • Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol. Neurobiol.34(3), 249–270 (2006).
  • Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann. Neurol.48(3), 285–296 (2000).
  • Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl Acad. Sci. USA92(10), 4666–4670 (1995).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.