266
Views
29
CrossRef citations to date
0
Altmetric
Perspective

Bladder dysfunction in multiple sclerosis

, &
Pages 331-340 | Published online: 09 Jan 2014

References

  • Greer JM, Csurhes PA, Cameron KD, McCombe PA, Good MF, Pender MP. Increased immunoreactivity to two overlapping peptides of myelin proteolipid protein in multiple sclerosis. Brain120(Pt 8), 1447–1460 (1997).
  • Pender MP, Csurhes PA, Wolfe NP et al. Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis. J. Clin. Neurosci.10(1), 63–66 (2003).
  • Pender MP, Csurhes PA, Greer JM et al. Surges of increased T cell reactivity to an encephalitogenic region of myelin proteolipid protein occur more often in patients with multiple sclerosis than in healthy subjects. J. Immunol.165(9), 5322–5331 (2000).
  • Pender MP, Csurhes PA, Houghten RA, McCombe PA, Good MF. A study of human T-cell lines generated from multiple sclerosis patients and controls by stimulation with peptides of myelin basic protein. J. Neuroimmunol.70(1), 65–74 (1996).
  • McCombe PA. Gender issues in multiple sclerosis. Expert Rev. Neurother.3, 649–660 (2003).
  • Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain129(Pt 3), 606–616 (2006).
  • Stadelmann C, Albert M, Wegner C, Bruck W. Cortical pathology in multiple sclerosis. Curr. Opin. Neurol.21(3), 229–234 (2008).
  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci.31, 247–269 (2008).
  • Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F. B cells and multiple sclerosis. Lancet Neurol.7(9), 852–858 (2008).
  • Miller H, Simpson CA, Yeates WK. Bladder dysfunction in multiple sclerosis. BMJ1(5445), 1265–1269 (1965).
  • Nortvedt MW, Riise T, Frugard J et al. Prevalence of bladder, bowel and sexual problems among multiple sclerosis patients two to five years after diagnosis. Mult. Scler.13(1), 106–112 (2007).
  • Bakke A, Myhr KM, Gronning M, Nyland H. Bladder, bowel and sexual dysfunction in patients with multiple sclerosis – a cohort study. Scand. J. Urol. Nephrol.179(Suppl.), 61–66 (1996).
  • de Seze M, Ruffion A, Denys P, Joseph PA, Perrouin-Verbe B. The neurogenic bladder in multiple sclerosis: review of the literature and proposal of management guidelines. Mult. Scler.13(7), 915–928 (2007).
  • Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat. Rev. Neurosci.9(6), 453–466 (2008).
  • Di Benedetto P, Giorgini T, Delneri CBE. Pathophysiology of urinary dysfunction in multiple sclerosis. Neuro. Sci.27, S320–S322 (2006).
  • de Groat WC, Booth AM, Milne RJ, Roppolo JR. Parasympathetic preganglionic neurons in the sacral spinal cord. J. Auton. Nerv. Syst.5(1), 23–43 (1982).
  • Wanke E, Ferroni A, Malgaroli A, Ambrosini A, Pozzan T, Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc. Natl Acad. Sci. USA84(12), 4313–4317 (1987).
  • Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics. Br. J. Pharmacol.147(Suppl. 2), S80–S87 (2006).
  • Abrams P, Andersson KE, Buccafusco JJ et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharmacol.148(5), 565–578 (2006).
  • Harriss DR, Marsh KA, Birmingham AT, Hill SJ. Expression of muscarinic M3-receptors coupled to inositol phospholipid hydrolysis in human detrusor cultured smooth muscle cells. J. Urol.154(3), 1241–1245 (1995).
  • Tran JA, Matsui M, Ehlert FJ. Differential coupling of muscarinic M1, M2, and M3 receptors to phosphoinositide hydrolysis in urinary bladder and longitudinal muscle of the ileum of the mouse. J. Pharmacol. Exp. Ther.318(2), 649–656 (2006).
  • Michel MC, Vrydag W. α1-, α2- and β-adrenoceptors in the urinary bladder, urethra and prostate. Br. J. Pharmacol.147(Suppl. 2), S88–S119 (2006).
  • Badawi JK, Seja T, Uecelehan H et al. Relaxation of human detrusor muscle by selective β-2 and β-3 agonists and endogenous catecholamines. Urology69(4), 785–790 (2007).
  • King JA, Huddart H, Staff WG. Purinergic modulation of rat urinary bladder detrusor smooth muscle. Gen. Pharmacol.29(4), 597–604 (1997).
  • King BF, Knowles ID, Burnstock G, Ramage AG. Investigation of the effects of P2 purinoceptor ligands on the micturition reflex in female urethane-anaesthetized rats. Br. J. Pharmacol.142(3), 519–530 (2004).
  • Khattab MM, Al-Hrasen MN, El-Hadiyah TM. Contractile activity of ATP and diadenosine tetraphosphate on urinary bladder in the rat: role of A1- and P2X-purinoceptors and nitric oxide. Auton. Autacoid Pharmacol.27(1), 55–62 (2007).
  • Andersson KE. Bladder activation: afferent mechanisms. Urology59(5 Suppl. 1), 43–50 (2002).
  • Calixto JB, Kassuya CA, Andre E, Ferreira J. Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol. Ther.106(2), 179–208 (2005).
  • Stein RJ, Santos S, Nagatomi J et al. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J. Urol.172(3), 1175–1178 (2004).
  • Kobayashi K, Fukuoka T, Obata K et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with aδ/c-fibers and colocalization with trk receptors. J. Comp. Neurol.493(4), 596–606 (2005).
  • Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci.24, 487–517 (2001).
  • Birder LA. TRPs in bladder diseases. Biochim. Biophys. Acta1772(8), 879–884 (2007).
  • Jiang CH, Mazieres L, Lindstrom S. Cold- and menthol-sensitive C afferents of cat urinary bladder. J. Physiol.543(Pt 1), 211–220 (2002).
  • Candenas L, Lecci A, Pinto FM, Patak E, Maggi CA, Pennefather JN. Tachykinins and tachykinin receptors: effects in the genitourinary tract. Life Sci.76(8), 835–862 (2005).
  • Saban R, Simpson C, Vadigepalli R, Memet S, Dozmorov I, Saban MR. Bladder inflammatory transcriptome in response to tachykinins: neurokinin 1 receptor-dependent genes and transcription regulatory elements. BMC Urol.7, 7 (2007).
  • Sengupta JN, Gebhart GF. Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J. Neurophysiol.72(5), 2420–2430 (1994).
  • Fowler CJ. Integrated control of lower urinary tract – clinical perspective. Br. J. Pharmacol.147(Suppl. 2), S14–S24 (2006).
  • Podnar S. Neurophysiology of the neurogenic lower urinary tract disorders. Clin. Neurophysiol.118(7), 1423–1437 (2007).
  • Kuipers R, Mouton LJ, Holstege G. Afferent projections to the pontine micturition center in the cat. J. Comp. Neurol.494(1), 36–53 (2006).
  • Kavia RB, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder. J. Comp. Neurol.493(1), 27–32 (2005).
  • Ramage AG. The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br. J. Pharmacol.147(Suppl. 2), S120–S131 (2006).
  • Kakizaki H, Yoshiyama M, Roppolo JR, Booth AM, de Groat WC. Role of spinal glutamatergic transmission in the ascending limb of the micturition reflex pathway in the rat. J. Pharmacol. Exp. Ther.285(1), 22–27 (1998).
  • Athwal BS, Berkley KJ, Hussain I et al. Brain responses to changes in bladder volume and urge to void in healthy men. Brain124(Pt 2), 369–377 (2001).
  • Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans. Brain120(Pt 1), 111–121 (1997).
  • Huber SJ, Paulson GW, Chakeres D et al. Magnetic resonance imaging and clinical correlations in multiple sclerosis. J. Neurol. Sci.86(1), 1–12 (1988).
  • Abrams P, Cardozo L, Fall M et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodyn.21(2), 167–178 (2002).
  • Starkman JS, Dmochowski RR. Urgency assessment in the evaluation of overactive bladder (OAB). Neurourol. Urodyn.27(1), 13–21 (2007).
  • Steers WD. Pathophysiology of overactive bladder and urge urinary incontinence. Rev. Urol.4(Suppl. 4), S7–S18 (2002).
  • Yamaguchi O, Honda K, Nomiya M et al. Defining overactive bladder as hypersensitivity. Neurourol. Urodyn.26(6 Suppl.), 904–907 (2007).
  • Mukerji G, Waters J, Chessell IP, Bountra C, Agarwal SK, Anand P. Pain during ice water test distinguishes clinical bladder hypersensitivity from overactivity disorders. BMC Urol.6, 31 (2006).
  • Vlaskovska M, Kasakov L, Rong W et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci.21(15), 5670–5677 (2001).
  • Apostolidis A, Brady CM, Yiangou Y, Davis J, Fowler CJ, Anand P. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology65(2), 400–405 (2005).
  • de Groat WC. A neurologic basis for the overactive bladder. Urology50(6A Suppl.), 36–52 (1997).
  • de Groat WC. Anatomy of the central neural pathways controlling the lower urinary tract. Eur. Urol.34(Suppl. 1), 2–5 (1998).
  • Watanabe T, Vaccaro AR, Kumon H, Welch WC, Rivas DA, Chancellor MB. High incidence of occult neurogenic bladder dysfunction in neurologically intact patients with thoracolumbar spinal injuries. J. Urol.159(3), 965–968 (1998).
  • Kalita J, Shah S, Kapoor R, Misra UK. Bladder dysfunction in acute transverse myelitis: magnetic resonance imaging and neurophysiological and urodynamic correlations. J. Neurol. Neurosurg. Psychiatry73(2), 154–159 (2002).
  • Sakakibara R, Kanda T, Sekido T et al. Mechanism of bladder dysfunction in idiopathic normal pressure hydrocephalus. Neurourol. Urodyn.27(6), 507–510 (2007).
  • Pettersen R, Stien R, Wyller TB. Post-stroke urinary incontinence with impaired awareness of the need to void: clinical and urodynamic features. BJU Int.99(5), 1073–1077 (2007).
  • Wiseman OJ, Brady CM, Hussain IF et al. The ultrastructure of bladder lamina propria nerves in healthy subjects and patients with detrusor hyperreflexia. J. Urol.168(5), 2040–2045 (2002).
  • Abdel-Gawad M, Dion SB, Elhilali MM. Evidence of a peripheral role of neurokinins in detrusor hyperreflexia: a further study of selective tachykinin antagonists in chronic spinal injured rats. J. Urol.165(5), 1739–1744 (2001).
  • O’Reilly BA, Kosaka AH, Knight GF et al. P2X receptors and their role in female idiopathic detrusor instability. J. Urol.167(1), 157–164 (2002).
  • King BF, Knowles ID, Burnstock G, Ramage AG. Investigation of the effects of P2 purinoceptor ligands on the micturition reflex in female urethane-anaesthetized rats. Br. J. Pharmacol.142(3), 519–530 (2004).
  • Brady CM, Apostolidis A, Yiangou Y et al. P2X3-immunoreactive nerve fibres in neurogenic detrusor overactivity and the effect of intravesical resiniferatoxin. Eur. Urol.46(2), 247–253 (2004).
  • Liu L, Mansfield KJ, Kristiana I, Vaux KJ, Millard RJ, Burcher E. The molecular basis of urgency: regional difference of vanilloid receptor expression in the human urinary bladder. Neurourol. Urodyn.26(3), 433–438 (2007).
  • Geppetti P, Nassini R, Materazzi S, Benemei S. The concept of neurogenic inflammation. BJU Int.101(Suppl. 3), 2–6 (2008).
  • Litwiller SE, Frohman EM, Zimmern PE. Multiple sclerosis and the urologist. J. Urol.161(3), 743–757 (1999).
  • Betts CD, D’Mellow MT, Fowler CJ. Urinary symptoms and the neurological features of bladder dysfunction in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry56(3), 245–250 (1993).
  • Borello-France D, Leng W, O’Leary M et al. Bladder and sexual function among women with multiple sclerosis. Mult. Scler.10(4), 455–461 (2004).
  • Haensch CA, Jorg J. Autonomic dysfunction in multiple sclerosis. J. Neurol.253(Suppl. 1), I3–I9 (2006).
  • Awad SA, Gajewski JB, Sogbein SK, Murray TJ, Field CA. Relationship between neurological and urological status in patients with multiple sclerosis. J. Urol.132(3), 499–502 (1984).
  • Higginson IJ, Hart S, Silber E, Burman R, Edmonds P. Symptom prevalence and severity in people severely affected by multiple sclerosis. J. Palliat. Care22(3), 158–165 (2006).
  • Mattson D, Petrie M, Srivastava DK, McDermott M. Multiple sclerosis. Sexual dysfunction and its response to medications. Arch. Neurol.52(9), 862–868 (1995).
  • Fernandez O. Mechanisms and current treatments of urogenital dysfunction in multiple sclerosis. J. Neurol.249(1), 1–8 (2002).
  • Yuruktumen A, Karcioglu O, Topacoglu H, Arslan ED. Acute renal failure associated with dysfunctioning detrusor muscle in multiple sclerosis. Adv. Ther.21(6), 343–347 (2004).
  • Franz DA, Towler MA, Edlich RF, Steers WD. Functional urinary outlet obstruction causing urosepsis in a male multiple sclerosis patient. J. Emerg. Med.10(3), 281–284 (1992).
  • Calabresi PA, Austin H, Racke MK et al. Impaired renal function in progressive multiple sclerosis. Neurology59(11), 1799–1801 (2002).
  • Giannantoni A, Scivoletto G, Di Stasi SM, Grasso MG, Vespasiani G, Castellano V. Urological dysfunctions and upper urinary tract involvement in multiple sclerosis patients. Neurourol. Urodyn.17(2), 89–98 (1998).
  • Amarenco G, Bosc S, Boiteau F. [Urologic complications of multiple sclerosis. 180 cases]. Presse. Med.25(22), 1007–1010 (1996).
  • Blaivas JG, Bhimani G, Labib KB. Vesicourethral dysfunction in multiple sclerosis. J. Urol.122(3), 342–347 (1979).
  • Goldstein I, Siroky MB, Sax DS, Krane RJ. Neurourologic abnormalities in multiple sclerosis. J. Urol.128(3), 541–545 (1982).
  • Gonor SE, Carroll DJ, Metcalfe JB. Vesical dysfunction in multiple sclerosis. Urology25(4), 429–431 (1985).
  • Wheeler JS Jr, Siroky MB, Pavlakis AJ, Goldstein I, Krane RJ. The changing neurourologic pattern of multiple sclerosis. J. Urol.130(6), 1123–1126 (1983).
  • Ciancio SJ, Mutchnik SE, Rivera VM, Boone TB. Urodynamic pattern changes in multiple sclerosis. Urology57(2), 239–245 (2001).
  • Kragt JJ, Hoogervorst EL, Uitdehaag BM, Polman CH. Relation between objective and subjective measures of bladder dysfunction in multiple sclerosis. Neurology63(9), 1716–1718 (2004).
  • Lemack GE, Frohman EM, Zimmern PE, Hawker K, Ramnarayan P. Urodynamic distinctions between idiopathic detrusor overactivity and detrusor overactivity secondary to multiple sclerosis. Urology67(5), 960–964 (2006).
  • Gu J, Polak JM, Deane A, Cocchia D, Michetti F. Increase of S-100 immunoreactivity in the urinary bladder from patients with multiple sclerosis, an indication of peripheral neuronal lesion. Am. J. Clin. Pathol.82(6), 649–654 (1984).
  • Van PH, Stessens R, Lazarides M, Van DB, Carton H, Baert L. Neuropathological examination of the alterations of the intrinsic innervation in multiple sclerosis cystopathy. Urol. Int.44(6), 321–326 (1989).
  • McCombe PA, Nickson I, Pender MP. Cytokine expression by inflammatory cells obtained from the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis induced by inoculation with myelin basic protein and adjuvants. J. Neuroimmunol.88(1–2), 30–38 (1998).
  • McCombe PA, Fordyce BW, de Jersey J, Yoong G, Pender MP. Expression of CD45RC and Ia antigen in the spinal cord in acute experimental allergic encephalomyelitis: an immunocytochemical and flow cytometric study. J. Neurol. Sci.113, 177–186 (1992).
  • McCombe PA, de Jersey J, Pender MP. Inflammatory cells, microglia and MHC class II antigen-positive cells in the spinal cord of Lewis rats with acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol.51, 153–167 (1994).
  • Mizusawa H, Igawa Y, Nishizawa O, Ichikawa M, Ito M, Andersson KE. A rat model for investigation of bladder dysfunction associated with demyelinating disease resembling multiple sclerosis. Neurourol. Urodyn.19(6), 689–699 (2000).
  • Vignes JR, Deloire MS, Petry KG, Nagy F. Characterization and restoration of altered inhibitory and excitatory control of micturition reflex in experimental autoimmune encephalomyelitis in rats. J. Physiol.578(Pt 2), 439–450 (2007).
  • Lifson JD, Oyasu R, Dreyer N, Carone FA, Williams RM. Acute hemorrhagic obstructive uropathy as a complication of experimental autoimmune encephalomyelitis. Arch. Pathol. Lab. Med.107(11), 600–602 (1983).
  • Altuntas CZ, Daneshgari F, Liu G et al. Bladder dysfunction in mice with experimental autoimmune encephalomyelitis. J. Neuroimmunol.203(1), 58–63 (2008).
  • Smith KJ, McDonald WI. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1390), 1649–1673 (1999).
  • Fowler CJ, Kalsi V. Bladder dysfunction in multiple sclerosis. Neurol. Sci.27(Suppl. 4), S323–S327 (2006).
  • Ismael SS, Epstein T, Bayle B, Denys P, Amarenco G. Bladder cooling reflex in patients with multiple sclerosis. J. Urol.164(4), 1280–1284 (2000).
  • Mathers SE, Ingram DA, Swash M. Electrophysiology of motor pathways for sphincter control in multiple sclerosis. J. Neurol. Neurosurg. Psychiatr.53(11), 955–960 (1990).
  • Andersen JT, Bradley WE. Abnormalities of detrusor and sphincter function in multiple sclerosis. Br J. Urol.48(3), 193–198 (1976).
  • Charil A, Zijdenbos AP, Taylor J et al. Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. Neuroimage19(3), 532–544 (2003).
  • Araki I, Matsui M, Ozawa K, Takeda M, Kuno S. Relationship of bladder dysfunction to lesion site in multiple sclerosis. J. Urol.169(4), 1384–1387 (2003).
  • Grasso MG, Pozzilli C, Anzini A, Salvetti M, Bastianello S, Fieschi C. Relationship between bladder dysfunction and brain MRI in multiple sclerosis. Funct. Neurol.6(3), 289–292 (1991).
  • Kim YH, Goodman C, Omessi E, Rivera V, Kattan MW, Boone TB. The correlation of urodynamic findings with cranial magnetic resonance imaging findings in multiple sclerosis. J. Urol.159(3), 972–976 (1998).
  • Ukkonen M, Elovaara I, Dastidar P, Tammela TL. Urodynamic findings in primary progressive multiple sclerosis are associated with increased volumes of plaques and atrophy in the central nervous system. Acta Neurol. Scand.109(2), 100–105 (2004).
  • Pirko I, Lucchinetti CF, Sriram S, Bakshi R. Gray matter involvement in multiple sclerosis. Neurology68(9), 634–642 (2007).
  • Valsasina P, Rocca MA, Agosta F et al. Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage26(3), 822–828 (2005).
  • Liu C, Edwards S, Gong Q, Roberts N, Blumhardt LD. Three dimensional MRI estimates of brain and spinal cord atrophy in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry66(3), 323–330 (1999).
  • de Seze J, Stojkovic T, Gauvrit JY et al. Autonomic dysfunction in multiple sclerosis: cervical spinal cord atrophy correlates. J. Neurol.248(4), 297–303 (2001).
  • Gunal DI, Afsar N, Tanridag T, Aktan S. Autonomic dysfunction in multiple sclerosis: correlation with disease-related parameters. Eur. Neurol.48(1), 1–5 (2002).
  • Bornstein MB, CRAIN SM. Functional studies of cultured brain tissues as realted to “Demyelinative disorders”. Science148, 1242–1244 (1965).
  • Schauf CL, Davis FA, Sack DA, Reed BJ, Kesler RL. Neuroelectric blocking factors in human and animal sera evaluated using the isolated frog spinal cord. J. Neurol. Neurosurg. Psychiatr.39(7), 680–685 (1976).
  • Schauf CL, Davis FA. The occurrence, specificity, and role of neuroelectric blocking factors in multiple sclerosis. Neurology28(9 Pt 2), 34–39 (1978).
  • Crain SM, Bornstein MB. Depression of complex bioelectric discharges in cerebral tissue cultures by thermolabile complement-dependent serum factors. Exp. Neurol.49(1 Pt 1), 330–335 (1975).
  • Seil FJ, Leiman AL, Kelly JM 3rd. Neuroelectric blocking factors in multiple sclerosis and normal human sera. Arch. Neurol.33(6), 418–422 (1976).
  • Koller H, Siebler M, Hartung HP. Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog. Neurobiol.52(1), 1–26 (1997).
  • Newsom-Davis J. Neuromuscular junction channelopathies: a brief overview. Acta Neurol. Belg.105(4), 181–186 (2005).
  • Weinshenker BG. Plasma exchange for severe attacks of inflammatory demyelinating diseases of the central nervous system. J. Clin. Apher.16(1), 39–42 (2001).
  • Martin MP, Monson NL. Potential role of humoral immunity in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Front. Biosci.12, 2735–2749 (2007).
  • Cross AH, Stark JL. Humoral immunity in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Immunol. Res.32(1–3), 85–97 (2005).
  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol.14(2), 164–174 (2004).
  • Archelos JJ, Storch MK, Hartung HP. The role of B cells and autoantibodies in multiple sclerosis. Ann. Neurol.47(6), 694–706 (2000).
  • Cross AH, Trotter JL, Lyons J. B cells and antibodies in CNS demyelinating disease. J. Neuroimmunol.112(1–2), 1–14 (2001).
  • Ziemssen T, Ziemssen F. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Autoimmun. Rev.4(7), 460–467 (2005).
  • Bartos A, Fialova L, Soukupova J, Kukal J, Malbohan I, Pitha J. Antibodies against light neurofilaments in multiple sclerosis patients. Acta Neurol. Scand.116(2), 100–107 (2007).
  • Wang F, Jackson MW, Maughan V et al. Passive transfer of Sjogren’s syndrome IgG produces the pathophysiology of overactive bladder. Arthritis Rheum.50(11), 3637–3645 (2004).
  • Wan EC, Gordon TP, Jackson MW. Autoantibody-mediated bladder dysfunction in type 1 diabetes. Scand J. Immunol.65(1), 70–75 (2007).
  • Jackson MW, Gordon TP, Waterman SA. Disruption of intestinal motility by a calcium channel-stimulating autoantibody in Type 1 diabetes. Gastroenterology126(3), 819–828 (2004).
  • Boissy AR, Cohen JA. Multiple sclerosis symptom management. Expert Rev. Neurother.7(9), 1213–1222 (2007).
  • Kalsi V, Fowler CJ. Therapy insight: bladder dysfunction associated with multiple sclerosis. Nat. Clin. Pract. Urol.2(10), 492–501 (2005).
  • Abrams P, Freeman R, Anderstrom C, Mattiasson A. Tolterodine, a new antimuscarinic agent: as effective but better tolerated than oxybutynin in patients with an overactive bladder. Br J. Urol.81(6), 801–810 (1998).
  • Andrews KL, Husmann DA. Bladder dysfunction and management in multiple sclerosis. Mayo Clin. Proc.72(12), 1176–1183 (1997).
  • Karram MM, Toglia MR, Serels SR, Andoh M, Fakhoury A, Forero-Schwanhaeuser S. Treatment with solifenacin increases warning time and improves symptoms of overactive bladder: results from VENUS, a randomized, double-blind, placebo-controlled trial. Urology73(1), 14–18 (2009).
  • Cardozo L, Hessdorfer E, Milani R et al. Solifenacin in the treatment of urgency and other symptoms of overactive bladder: results from a randomized, double-blind, placebo-controlled, rising-dose trial. BJU Int.102(9), 1120–1127 (2008).
  • Bosma R, Wynia K, Havlikova E, De KJ, Middel B. Efficacy of desmopressin in patients with multiple sclerosis suffering from bladder dysfunction: a meta-analysis. Acta Neurol. Scand.112(1), 1–5 (2005).
  • Zahariou A, Karamouti M, Karagiannis G, Papaioannou P. Maximal bladder capacity is a positive predictor of response to desmopressin treatment in patients with MS and nocturia. Int. Urol. Nephrol.40(1), 65–69 (2008).
  • Valiquette G, Herbert J, Maede-D’Alisera P. Desmopressin in the management of nocturia in patients with multiple sclerosis. A double-blind, crossover trial. Arch. Neurol.53(12), 1270–1275 (1996).
  • Tubridy N, Addison R, Schon F. Long term use of desmopressin for urinary symptoms in multiple sclerosis. Mult. Scler.5(6), 416–417 (1999).
  • Fowler CJ, Jewkes D, McDonald WI, Lynn B, de Groat WC. Intravesical capsaicin for neurogenic bladder dysfunction. Lancet339(8803), 1239 (1992).
  • de Seze M, Wiart L, Joseph PA, Dosque JP, Mazaux JM, Barat M. Capsaicin and neurogenic detrusor hyperreflexia: a double-blind placebo-controlled study in 20 patients with spinal cord lesions. Neurourol. Urodyn.17(5), 513–523 (1998).
  • Brady CM, Apostolidis AN, Harper M et al. Parallel changes in bladder suburothelial vanilloid receptor TRPV1 and pan-neuronal marker PGP9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int.93(6), 770–776 (2004).
  • Schurch B, Stohrer M, Kramer G, Schmid DM, Gaul G, Hauri D. Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results. J. Urol.164(3 Pt 1), 692–697 (2000).
  • Schmid DM, Sauermann P, Werner M et al. Experience with 100 cases treated with botulinum-A toxin injections in the detrusor muscle for idiopathic overactive bladder syndrome refractory to anticholinergics. J. Urol.176(1), 177–185 (2006).
  • Reitz A, Denys P, Fermanian C, Schurch B, Comperat E, Chartier-Kastler E. Do repeat intradetrusor botulinum toxin type a injections yield valuable results? Clinical and urodynamic results after five injections in patients with neurogenic detrusor overactivity. Eur. Urol.52(6), 1729–1735 (2007).
  • Giannantoni A, Mearini E, Del ZM, Santaniello F, Porena M. Botulinum A toxin in the treatment of neurogenic detrusor overactivity: a consolidated field of application. BJU Int.102(Suppl. 1), 2–6 (2008).
  • Giannantoni A, Mearini E, Del ZM, Santaniello F, Porena M. Botulinum A toxin in the treatment of neurogenic detrusor overactivity: a consolidated field of application. BJU Int.102(Suppl. 1), 2–6 (2008).
  • Dong M, Yeh F, Tepp WH et al. SV2 is the protein receptor for botulinum neurotoxin A. Science312(5773), 592–596 (2006).
  • Duthie J, Wilson DI, Herbison GP, Wilson D. Botulinum toxin injections for adults with overactive bladder syndrome. Cochrane Database Syst. Rev.3, CD005493 (2007).
  • Apostolidis A, Dasgupta P, Denys P et al. Recommendations on the use of botulinum toxin in the treatment of lower urinary tract disorders and pelvic floor dysfunctions: a European Consensus Report. Eur. Urol. DOI 10.1016/j.eururo.2008.09.009 (2008) (Epub ahead of print).
  • Kalsi V, Apostolidis A, Popat R, Gonzales G, Fowler CJ, Dasgupta P. Quality of life changes in patients with neurogenic versus idiopathic detrusor overactivity after intradetrusor injections of botulinum neurotoxin type A and correlations with lower urinary tract symptoms and urodynamic changes. Eur. Urol.49(3), 528–535 (2006).
  • Kalsi V, Gonzales G, Popat R et al. Botulinum injections for the treatment of bladder symptoms of multiple sclerosis. Ann. Neurol.62(5), 452–457 (2007).
  • Schurch B. Botulinum toxin for the management of bladder dysfunction. Drugs66(10), 1301–1318 (2006).
  • Apostolidis A, Dasgupta P, Fowler CJ. Proposed mechanism for the efficacy of injected botulinum toxin in the treatment of human detrusor overactivity. Eur. Urol.49(4), 644–650 (2006).
  • Centonze D, Petta F, Versace V et al. Effects of motor cortex rTMS on lower urinary tract dysfunction in multiple sclerosis. Mult. Scler.13(2), 269–271 (2007).
  • Fjorback MV, Rijkhoff N, Petersen T, Nohr M, Sinkjaer T. Event driven electrical stimulation of the dorsal penile/clitoral nerve for management of neurogenic detrusor overactivity in multiple sclerosis. Neurourol. Urodyn.25(4), 349–355 (2006).
  • Kabay SC, Yucel M, Kabay S. Acute effect of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with multiple sclerosis: urodynamic study. Urology71(4), 641–645 (2008).
  • Colli E, Digesu GA, Olivieri L. Overactive bladder treatments in early phase clinical trials. Expert Opin. Investig. Drugs16(7), 999–1007 (2007).
  • Kamiyama Y, Muto S, Masuda H et al. Inhibitory effects of nicorandil, a K ATP channel opener and a nitric oxide donor, on overactive bladder in animal models. BJU Int.101(3), 360–365 (2008).
  • Andersson KE, Uckert S, Stief C, Hedlund P. Phosphodiesterases (PDEs) and PDE inhibitors for treatment of LUTS. Neurourol. Urodyn.26(6 Suppl.), 928–933 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.