77
Views
28
CrossRef citations to date
0
Altmetric
Review

Live bacteria as the basis for immunotherapies against cancer

, , &
Pages 495-505 | Published online: 09 Jan 2014

References

  • Pardon. DM. Cancer vaccines. Nat. Med (Suppl. 5), 525–531 (1998).
  • Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 411,380–384 (2001).
  • Yu Z, Restifo NP Cancer vaccines: progress reveals new complexities. j Clin. Invest. 110(3), 289–294 (2002).
  • Heppner F, Mose JR. The liquefaction (oncolysis) of malignant gliomas by a non-pathogenic Clostridium. Acta Neurochir. 42,123–125 (1978).
  • Alexandroff AB, Jackson AM, O'Donnell MA, James K. BCG immunotherapy of bladder cancer: 20 years on. Lancet 353, 1689–1694 (1999). Very good review of the use of BCG for immunotherapy of bladder cancer, that delve into the immunological mechanisms underlying its effect.
  • Iori F, Di Seri M, De Nunzio C et al Long- term maintenance bacille Calmette-Guerin therapy in high-grade superficial bladder cancer. Urology59, 414–418 (2002).
  • Pansadoro V, Emiliozzi P, de Paula F, Scarpone P, Pansadoro A, Sternberg CN. Long-term follow-up of G3T1 transitional cell carcinoma of the bladder treated with intravesical bacille Calmette-Guerin: 18-year experience. Urology59, 227–231 (2002).
  • Baker MA, Taub RN, Carter WH. Immunotherapy for remission maintenance in acute myeloblastic leukemia. Cancer Immunol Immunother. 13,85–88 (1982).
  • Bertl D. Autologous, hapten-modified vaccine as a treatment for human cancers. Vaccine 19,2565–2570 (2001).
  • Wood GW, Holladay FP, Turner T, Wang YY, Chiga M. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using antiCD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma.J. Neurooncol 48, 113–120 (2000).
  • Hanna MG Jr, Hoover HC Jr, Vermorken JB, Harris JE, Pinedo HM. Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized Phase III trials show promise. Vaccine 19,2576–2582 (2001).
  • •Reviews three different phase III clinical trials with OncoVAkrm in colon cancer patients.
  • DiFronzo LA, Gupta RK, Essner R et al. Enhanced humoral immune response correlates with improved disease-free and overall survival in American Joint Committee on Cancer stage II melanoma patients receiving adjuvant polyvalent vaccine. j Clin. Onco1.20, 3242–3248 (2002).
  • Habal N, Gupta RK, Bikhik AJ et al. CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular immune responses in advanced colon cancer. Ann. Surg: Oncol 8,389–401 (2001).
  • Brandau S, Suttmann H, Riemensberger J et al Perforin-mediated lysis of tumor cells by Mycobacterium bovis Bacillus Calmette-Guerin-activated killer cells. Gun. Cancer Res. 6,3729–3738 (2000).
  • •Reviews their own evidence of the perforin-dependent mechanisms of killing tumor cells by BCG-activated killer cells.
  • De Reijke TM, Vos PC, de Boer EC et al. Cytokine production by the human bladder carcinoma cell line T24 in the presence of bacillus Calmette-Guerin (BCG). Ural Res. 21,349-352 (1993).
  • Ratliff TL, Ritchey JK, Yuan JJ, Andriole GL, Catalona WJ. T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. 1 Uml. 150,1018-1023 (1993).
  • Fujimoto T, O'Donnell MA, Szilvasi A, Yang H, Duda RB. Bacillus Calmette-Guerin plus interleukin-2 and/or granulocyte/macrophage-colony-stimulating factor enhances immunocompetent cell production of interferon-gamma, which inhibits B16F10 melanoma cell growth in vitro. Cancer Immunol Immunother. 42,280–284 (1996).
  • Geldmacher H, Taube C, Markert U, Kirsten DK. Nearly fatal complications of cervical lymphadenitis following BCG immunotherapy for superficial bladder cancer. Respiration 68,420–421 (2001).
  • Kamphuis JT, Buiting AG, Misere JF, van Berge Henegouwen DP, van Soolingen D, Rensma PL. BCG immunotherapy: be cautious of granulomas. Disseminated BCG infection and mycotic aneurysm as late complications of intravesical BCG instillations. Neth. Med 58,71–75 (2001).
  • Durek C, Richter E, Basteck A et al. The fate of bacillus Calmette-Guerin after intravesical instillation. J. Ural 165,1765–1768 (2001).
  • O'Donnell MA. The genetic reconstruction of BCG as a new immunotherapeutic tool. 7i-ends Biotechnol 15,512–517 (1997).
  • Duda RB, Yang H, Dooley DD, Abu- Jawdeh G. Recombinant BCG therapy suppresses melanoma tumor growth. Ann. Surg. Oncol 2,542–549 (1995).
  • Luo Y, Chen X, Han R, O'Donnell MA. Recombinant bacille Calmette-Guerin (BCG) expressing human interferon-CL 2B demonstrates enhanced immunogenicity. Clin. Exp. Immunol 123,264–270 (2001).
  • Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G. Salmonella: immune responses and vaccines. Vet. j 161, 132–164 (2001).
  • Medina E, Guzman CA. Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine 19,1573–1580 (2001).
  • Jensen ER, Shen H, Wettstein FO, Ahmed R, Miller JE Recombinant Listeria monocytogenes as a live vaccine vehicle and a probe for studying cell-mediated immunity. Immunol Rev 158,147–157 (1997).
  • Darji A, Guzman CA, Gerstel B et al. Oral somatic transgene vaccination using attenuated S. Ophimurium. Ce1191, 765–775 (1997). Landmark paper with the first reported evidence of in vivo plasmid-transfer from Salmonella to mammalian host cells.
  • Dietrich G, Bubert A, Gentschev I et al Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat. Biotechnol 16,181–185 (1998).
  • Gentschev I, Dietrich G, Spreng S et al Delivery of protein antigens and DNA by virulence-attenuated strains of Salmonella Ophimurium and Listeria monocytogenes. Biotechnol 83,19–26 (2000).
  • Paglia P, Medina E, Arioli I, Guzman CA, Colombo MR Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella Ophimurium, results in protective immunity against a murine fibrosarcoma. B/ooc/92,3172–3176 (1998).
  • Tilney LG, Portnoy DA. Actin filaments and the growth, movement and spread of the intracellular parasite, Listeria monocytogenes.j Cell Biol. 109,1597–1608 (1989).
  • Chastellier C, Berche R Fate of Listeria monocytogenes in murine macrophages: Evidence for simultaneous killing and survival of intracellular bacteria. Infect. Immun. 62,543–553 (1994).
  • Paterson Y, Ikonomidis G. Recombinant Listeria monocytogenes cancer vaccines. C1.117: Opin. Immunol 8,664–669 (1996).
  • Weiskirch LM, Paterson Y. Listeria monocytogenes: a potent vaccine vector for neoplastic and infectious disease. Immunol Rev 158,159–169 (1997).
  • Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat. Merl 1(5), 471–477 (1995).
  • Weiskirch LM, Pan ZK, Paterson Y. The tumor recall response of antitumor immunity primed by a live, recombinant Listeria monocytogenes vaccine comprises multiple effector mechanisms. Clin. Immunol 98(3), 346–357 (2001).
  • Paglia P, Arioli I, Frahm N, Chakraborty T, Colombo MP, Guzman CA. The defined attenuated Listeria monocytogenes delta mpl2 mutant is an effective oral vaccine carrier to trigger a long-lasting immune response against a mouse fibrosarcoma. Eur Immunol 27(6), 1570–1575 (1997).
  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T-cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. I Immunol 167(11), 6471–6479 (2001).
  • Pan ZK, Weiskirch LM, Paterson Y. Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res. 59(20), 5264–5269 (1999).
  • Liau LM, Jensen ER, Kremen TJ et al Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res. 62,2287–2293 (2002).
  • Brumell JH, Perrin AJ, Goosney DL, Finlay BB. Microbial pathogenesis: new niches for Salmonella. Cun: Biol. 12, R15–17 (2002).
  • Wick MJ, Ljunggren HG. Processing of bacterial antigens for peptide presentationon MHC class I molecules. Immunol Rev 172,153–162 (1999).
  • Hess J, Gentschev I, Miko D et al Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc. Nat/Acad. Li. USA 93,1458–1463 (1996).
  • Yrlid U, Svensson M, Johansson C, Wick MJ. Salmonella infection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEIVIS ['inland Merl Mavbiol 27,313–320 (2000).
  • Monack DM, Raupach B, Hromockyj AE, Falkow S. Salmonella Ophimurium invasion induces apoptosis in infected macrophages. Proc. Natl Acad. Sc]. USA 93,9833–9838 (1996).
  • Yrlid U, Wick MJ. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. Exp. Med. 191,613–624 (2000).
  • Weiss S, Chakraborty T Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Cum Opin. Biotechnol 12(5), 467–472 (2001).
  • Paglia P, Medina E, Arioli I, Guzman CA, Colombo MR Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella Ophimurium, results in protective immunity against a murine fibrosarcoma. Blood 92,3172–3176 (1998).
  • Medina E, Guzman CA, Staendner LH, Colombo MP, Paglia R Salmonella vaccine carrier strains: effective delivery system to trigger antitumor immunity by oral route. Eur Immunol 29(2), 693–699 (1999).
  • Niethammer AG, Primus FJ, Xiang R et al An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine 20(3-4), 421–429 (2001).
  • Xiang R, Lode HN, Chao TH et al An autologous oral DNA vaccine protects against murine melanoma. Proc. Natl Acad. Sc]. USA 97(10), 5492–5497 (2000).
  • •Interesting paper showing the antitumor effect of live attenuated Salmonella as a vector for plasmids encoding fusions of the murine ubiquitin gene with peptides from melanoma antigens under CMV promoter.
  • Cochlovius B, Stassar MJ, Schreurs MW Benner A and Adema GJ. Oral DNA vaccination: antigen uptake and presentation by dendritic cells elicits protective immunity. Immunol. Lett. 80, 89–96 (2002).
  • Weth R, Christ 0, Stevanovic S, Zoller M. Gene delivery by attenuated Salmonella Ophimuriunz comparing the efficacy of helper versus cytotoxic T-cell priming in tumor vaccination. Cancer Gene Ther. 8, 599–611 (2001).
  • Zoller M, Christ O. Prophylactic tumor vaccination: comparison of effector mechanisms initiated by protein versus DNA vaccination. j Immund 166,3440–3450 (2001).
  • Rescigno M, Valzasina B, Bonasio R, Urbano M, Ricciardi-Castagnoli R Dendritic cells, loaded with recombinant bacteria expressing tumor antigens, induce a protective tumor-specific response. Clin. Cancer Res. 7,865s-870s (2001).
  • Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Ann. Rev. Med. 50,507–529 (1999).
  • Urashima M, Suzuki H, Yuza Y, Akiyama M, Ohno N, Eto Y. An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood 95,1258–1263 (2000).
  • •Describes a novel approach of the use of Salmonella as a vector for imrnunotherapies against cancer.
  • Xiang R, Primus FJ, Ruehlmann JM et al A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T-cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. Immund 167,4560–4565 (2001).
  • Yuhua L, Kunyuan G, Hui C et al Oral cytokine gene therapy against murine tumor using attenuated Salmonella Ophimmium. Int. Cancer94, 438–443 (2001).
  • Agorio C, Schreiber F, Chiara D, Rosenkranz C, Martinez M, Chabalgoity JA. Live attenuated Salmonella encoding recombinant cytokines as the basis for therapeutic vaccines against melanoma. Proceedings of the 3m1 World Congmss on Vaccines and Immunisation. Opatija, Croatia S5-4 (2002).
  • Bao JX, Clements JD. Prior immunologic experience potentiates the subsequent antibody response when Salmonella strains are used as vaccine carriers. Infect. Immun. 59(103841–3845 (1991).
  • Chabalgoity JA, Villareal-Ramos B, Khan CM et al Influence of preimmunization with tetanus toxoid on immune responses to tetanus toxin fragment C-guest antigen fusions in a Salmonella vaccine carrier. Infect. Immun. 63(7), 2564–2569 (1995).
  • Roberts M, Bacon A, Li J et al Prior immunity to homologous and heterologous Salmonella serotypes suppresses local and systemic antifragment C antibody responses and protection from tetanus toxin in mice immunized with Salmonella strains expressing fragment C. Infect. Immun. 67(8), 3810–3815 (1999).
  • Whittle BL, Verma NK. The immune response to a B-cell epitope delivered by Salmonella is enhanced by prior immunological experience. Vaccine (16), 1737–1740 (1997).
  • Attridge SR, Davies R, LaBrooy JT. Oral delivery of foreign antigens by attenuated Salmonella: consequences of prior exposure to the vector strain. Vaccine 15 (2), 155–162 (1997).
  • Ben-Yedidia T, Arnon R. Effect of pre- existing carrier immunity on the efficacy of synthetic influenza vaccine. Immund Lett. 64(1), 9–15 (1998).
  • Forrest BD. Impairment of immunogenicity of Salmonella OphiTy2la due to preexisting cross-reacting intestinal antibodies. j Infect. Dis. 166(1), 210–212 (1992).
  • Ferguson A, Sallam J. Mucosal immunity to oral vaccines. Lancet 339(8786):17970 (2000).
  • Sznol M, Lin SL, Bermudes D, Zheng LM and King I. Use of preferentially replicating bacteria for the treatment of cancer. J. Clin. Invest. 105,1027–1030 (2000).
  • Lemmon MJ, van Zijl P, Fox ME et al Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene flier. 4,791–796 (1997).
  • Liu SC, Minton NP, Giaccia AJ, Brown JM. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Pier 9,291–296 (2002).
  • Nuyts S, Theys J, Landuyt W, van Mellaert L, Lambin P, Anne J. Increasing specificity of antitumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. AntiCancer Res. 21,857–861 (2001).
  • Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57,4537–4544 (1997).
  • Low KB, Ittensohn M, Le T et al Lipid A mutant Salmonella with suppressed virulence and TNF-a induction retain tumor-targeting in vivo. Nat. Biotechnol. 17,37–41 (1999).
  • •Interesting paper describing the construction of an attenuated strain of Salmonella (VNP 19200009) with reduced potential for TNF-a induction in vivo, but that maintains tumor-targeting capacity in mice and an antitumor effect.
  • Rosenberg SA, Spiess PJ, Kleiner DE. Antitumor effects in mice of the iv. injection of attenuated Salmonella typhimurium. j Immunother. 25,218–225 (2002).
  • Zheng LM, Luo X, Feng M et al Tumor amplified protein expression therapy: Salmonella as a tumor- selective protein delivery vector. Oncol Res. 12,127–135 (2000).
  • Platt J, Sodi S, Kelley M et al. Antitumour effects of genetically engineered Salmonella in combination with radiationEur Cancer 36,2397–2402 (2000).
  • Clairmont C, Lee KC, Pike J et al Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. Infect. Dis. 181,1996-2002 (2000).
  • Toso JF, Gill VJ, Hwu P et al Phase I study of the iv. administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Gun. Oncol 20, 142–152 (2002).
  • •First clinical trial with Salmonella VNP 1920009 in melanoma patients.
  • Pawelek JM, Sodi S, Chakraborty AK et al Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther. 9(10), 813–818 (2002).
  • Cunningham C, Nemunaitis J. A Phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Hum. Gene Ther. 12,1594-1596 (2001).
  • Sogn JA. Tumor immunology: the glass is half full. Immunity9, 757–763 (1998).
  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anti Cancer Res. 20,2665–2676 (2000).
  • Finn 0J, Forni G. Prophylactic cancer vaccines. Cutr Opin. 'minimal 14,172–177 (2002).
  • Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Ce1154(1), 105–15 (1988).
  • Johnson L, Mercer K, Greenbaum D etal. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410(6832), 1111–1116 (2001).
  • Greenberg NM, DeMayo F, Finegold MJ et al. Prostate cancer in a transgenic mouse. Proc. Nati Acad. Sci. USA 92(8), 3439–3443 (1995).
  • Thompson J, Epting T, Schwarzkopf G et al. A transgenic mouse line that develops early-onset invasive gastric carcinoma provides a model for carcinoembryonic antigen-targeted tumor therapy. int. J. Cancer 86(6), 863–869 (2000).
  • Heyer J, Yang K, Lipkin M, Edelmann W, Kucherlapati R. Mouse models for colorectal cancer. Oncogene 18(38), 5325–5333 (1999).
  • Wagner M, Greten FR, Weber CK etal. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 15(3), 286–293 (2001).
  • Janssen KP, el-Maijou FE, Pinto D etal. Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 123(2), 492–504 (2002).
  • Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras mutations in patients with colorectal cancer: the multicenter 'RASCAL study. Nat! Cancer Inst. 90(9), 675–684 (1998).
  • Jung S, Schluesener HJ. Human T- lymphocytes recognize a peptide of single point-mutated, oncogenic ras proteins. j Elp. Med. 173(1), 273–276 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.