70
Views
34
CrossRef citations to date
0
Altmetric
Review

Contemporary approaches to designing and evaluating vaccines against Chlamydia

, &
Pages 129-146 | Published online: 09 Jan 2014

Referance

  • Bush PM, Everett KD. Molecular evolution of Chlamydiaceae. int. j Syst. Evol M'crobiol. 51(1), 203–220 (2001).
  • Everett KD, Bush PM, Andersen AA. Emended description of the order Chlamycliales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of family Chlamydiaceae, including new genus and five new species and standards for the identification of organisms. Lit. J. Syst. Bacteriol 49(2), 415–440 (1999).
  • Schachter J, Stephens RS, Timms P eta]. Radical changes to chlamyclial taxonomy are not necessary just yet. Lit. j Syst. Evol Mcrobiol 51(1), 251–253 (2001).
  • Stephens RS, Tarn MR, Kuo C-C, Nowinski RC. Monodonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. J. Immunol 128, 1083–1089 (1982).
  • Stephens RS, EA Wagar, GK Schoolnik. High-resolution mapping of specific and and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J. Exp. Med. 167, 817–831 (1988).
  • Bain DL, Lietman T, Rasmussen S etal. Chlamyclial genovar distribution after communitywide antibiotic treatment. J. Infect. Dis. 184, 1581–1588 (2001).
  • Bandea CI, Kubotaa K, Brown TM etal. Typing of Chlamydia trachomatisstrains from urine samples by amplification and sequencing the major outer membrane protein (ompl) . Sex. Tmnsm. Infect. 77(6), 419–422 (2001).
  • Dean D, Schachter J, Davvson CR, Stephens RS. Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: A molecular epidemiologic approach to Chlamydia trachomatifinfections. Infect. Dis. 166,383–392 (1992).
  • Hayes LI Pecharatana Bailey, S. PL et al. Extent and kinetics of genetic change in the ompl gene of Chlamydia trachomatisin two villages with endemic trachoma. J. Infect. Dir. 172(1), 268–272 (1995).
  • Miyashita N, Fukano H, Hara H eta]. Recurrent pneumonia due to persistent Chlamydia pneumoniae infection. Intern. Med. 41(1), 30–33 (2002).
  • Schachter J. Infection and disease epidemiology. In: Chlamydia: intracellular biology, pathogenesis and immunity Stephens RS (Ed.). ASM, Washington, DC, USA (1999).
  • Mahdi OS, Byrne GI, Kalayoglu M. Emerging strategies in the diagnosis, prevention and treatment of chlamyclial infections. Expert Opin. Therapeutic Patents 11(8), 1253–1265 (2001).
  • •Provides a list of current patents on candidate vaccines.
  • Schachter J, Osoba AO. Lymphogranuloma venereum. BE Med Bull 39,151–154 (1983).
  • Mabey D, Peeling RW. Lymphogranuloma venereum. Sex. Tmnsim Infect. 78,90–92 (2002).
  • WHO: Global prevalence and incidence of selected curable sexually transmitted diseases: Overview and estimates. WHO, Geneva, Switzerland (1996).
  • Schachter J, Grayston JT. Epidemiology of Human Chlamyclial Infections. In: Chlamydial Infections. Stephens RS, Byrne GI, Christiansen G etal. (Eds) . Berkeley, San Francisco, CA, USA (1998).
  • Johnson RE, Newhall WJ, Papp JR eta]. Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections — 2002. Morbidity Mortality Wkly Report (Recommendations and Reports) 51(RR-15), 1–40 (2002).
  • •Provides the most recent diagnostic guidelines.
  • Groseclose SL, Zaidi AA, DeLisle SJ, Levine WC, St. Louis ME. Estimated incidence and prevalence of genital Chlamydia trachomatis infections in the United States, 1996. Sex. 72ansm. Dis. 26, 339–344 (1999).
  • Paavonen J, Wolner-Hanssen P Chlamydia trachomatis: a major threat to reproduction. Hum. Reprod. 4,111–124 (1989).
  • Stamm WE, Guinan ME, Johnson C et al. Effect of treatment regimens for Neisseria gonorrhoeae on simultaneous infection with Chlamydia trachomatis. N Engl. J. Med 310, 545–549 (1984).
  • Rees E. Treatment of pelvic inflammatory disease. Am.j Obstet. Gynecol 138, 1042–1047 (1980).
  • Westrom L, Joesoef R, Reynolds G, Hadgu A, Thompson SE. Pelvic inflammatory inflammatory disease and infertility: a cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopy results. Sex. 72ansm. Dis. 19, 185–192 (1992).
  • CDC: Sexually transmitted disease surveillance, 2000, US Department of Health and Human Services, CDC, Atlanta, GA, USA (2001).
  • Thior I, Diouf G, Diaw IK eta]. Sexually transmitted diseases and risk of HIV infection in men attending a sexually transmitted diseases clinic in Dakar, Senegal. Afi: I Reprvd. Health 1(2), 26–35 (1997).
  • Wilkinson D, Rutherford G. Population-based interventions for reducing sexually transmitted infections, including HIV infection. Cochrane Database Syst. Rev (2), CD001220 (2001).
  • Monno R, Maggi P, Carbonara S etal Chlamydia trachomatis and 4cobaterium tuberculosislung infection in an HIV positive homosexual man. AIDS Patient Care STDs 15(12), 607–610 (2001).
  • Kilmarx PH, Mock PA, Levine WC. Effect of Chlamydia trachomatiscoinfection on HIV shedding in genital tract secretion. Sex. Transm. Dis. 28(6), 347–348 (2001).
  • Mcdelland RS, Wang CC, Mandaliya K etal Treatment of cervicitis is associated with decreased cervical shedding of HIV-1. A/DS15(1), 105–110 (2001).
  • Chesson HW, Pinkerton SD. Sexually transmitted diseases and the increased risk for HIV transmission: implications for cost-effectiveness analyses of sexually transmitted disease prevention interventions. J. Acquit: Immune Defic. Synth: 24(1), 48–56 (2000).
  • Rotchford K, Strum AW, Wilkinson D. Effect of coinfection with STDs and S IL) treatment on HIV shedding in genital-tract secretions: systematic review and data synthesis. Sex. Bansm DA 27(5), 243–248 (2000).
  • Kuo CC, Jackson LA, Campbell LA, Grayston JT. Chlamydia pneumoniae (TWAR). Clin. Mcrobiol Rev 8(4), 451–461 (1995).
  • Gaillat J. Clinical manifestations of Chlamydia pneumoniae infections. Revue de Med. Interne 17,987–999 (1996).
  • Saikku P, Wang SP, Kleemola M eta]. An epidemic of mild pneumonia due to an unusual strain of Chlamydia psittaci. Infect. Dis. 151,832–839 (1985).
  • Schachter J. NAATs to diagnose Chlamydia trachomatis genital infection: a promise still unfulfilled. Expert Rev Md. Diagn. 1(2), 137–144 (2001).
  • Johnson RE, GreenTA, Schachter J etal Evaluation of nucleic acid amplification tests as reference tests for Chlamydia trachomatis infections in asymptomatic men.Mcrobiol. 38(12), 4382–4386 (2000).
  • Thein J, Zhao P, Liu H eta]. Does clinical diagnosis indicate chlamydial infection in areas with a low prevalence of trachoma? Ophthalmic 431demiol. 9(4), 263–269 (2002).
  • Stamm WE, Chlamydia trachomatis infections of the adult. In: Sexually transmitted diseases. Holmes KK, Spading PF, Mardh P-A et al (Eds). McGraw-Hill, New York, NY, USA (1999).
  • Bragina EY, Gomberg MA, Dmitriev GA. Electron microscopic evidence of persistent chlamydial infection following treatment. j FIR: Acad. Dennatol. linen-0115(5), 405–409 (2001).
  • Byrne GI. Chlamydial treatment failures: a persistent problem? j FIR: Acad. Dennatol. linerrol. 15(5), 381 (2001).
  • Dreses-Werringloer U, Padubrin I, Jurgens-Saathoff B eta]. Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in virtu Antimicrob. Agents Chemother. 44(12), 3288–3297 (2000).
  • Rees E, Tait IA, Hobson D, Karayiannis P, Lee N. Persistence of chlamydial infection after treatment for neonatal conjunctivitis. Arch. Dis. Child. 56,193–198 (1981).
  • Babalola OE, Bage SD. The persistence of chlamydial inclusions in clinically quiescent trachoma. West Afi: Med. 11 (1), 55–61 (1992).
  • Thejls H, Gnarpe J, Lundkvist O etal Diagnosis and prevalence of persistent Chlamydia infection infertile women by tissue culture, direct antigen detection and serology. Fertil Sten]: 55,304–310 (1991).
  • Dean D, Suchland RJ, Stamm WE. Evidence for long-term cervical persistence of Chlamydia trachomatis by ompl genotyping. j Infect. Dis. 182,909–916 (2000).
  • Smith A, Munoz B, Hsieh YH eta]. OmpA genotypic evidence for persistent ocular Chlamydia trachomatis infection in Tanzania village women. Ophthalmic 431demiol. 8(2–3), 127–135 (2001).
  • Black CM, Morse SA. The use of molecular techniques for the diagnosis and epidemiologic study of sexually transmitted infections. CUIT: Infect. Dis. Rep. 2(1), 31–43 (2000).
  • Sterlin M, Shafer MA, Tebb K eta]. What sexually transmitted disease screening method does the adolescent prefer? Adolescents' attitudes toward first-void urine, self-collected vaginal swab and pelvic examination. Arrh. Pediati: Adolesc. 156(6), 588–591 (2002).
  • Holm SO, Jha HC, Bhatta JC etal Comparison of two azithromycin distribution strategies for controlling trachoma in Nepal. Bull 14brld Health Organ. 79(3), 194–200 (2001).
  • Diamant J, Benis R, Schachter J eta]. Pooling of Chlamydia laboratory tests to determine the prevalence of ocular Chlamydia trachomatisinfection. Ophthalmic .431demiol 8(2–3), 109-117(2001).
  • Hammerschlag MR, Roblin PM. Microbiologic efficacy of moxifloxacin for the treatment of community-acquired pneumonia due to Chlamydia pneumoniae. Int. J. Antimicm. Agents 15(2), 149–152 (2000).
  • Dawnson CR, Schachter J. Should trachoma be treated with antibiotics? Lancet 359(9302), 184–185 (2002).
  • Cohen CR, Brunham RC. Pathogenesis of Chlamydia induced pelvic inflammatory disease. Sex. Tatum. Infect. 75(1), 21–24 (1999).
  • De la Maza MA, De la Maza LM. A new computer model for estimating the impact of vaccination protocols and its application to the study of Chlamydia trachoma& genital infections. Vaccine 13(1), 119–127 (1995).
  • •Provides the result of a computer modeling of the impact of even a partially protective vaccine on disease.
  • Brunham RC, Peeling RW. Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect. Agents Dis. 3,218–233 (1994).
  • LaVerda D, Kalayoglu MV, Byrne GI. Chlamydial heat shock proteins and disease pathology: new paradigms for old problems? Infect. Dis. Obstet. Cynecol 7(1–2), 64–71 (1999).
  • •Role of chlarnydia-derived antigens in pathogenesis.
  • Taylor HR, Maclean IW, Brunham RC, Pal S, Whittum-Hudson J. Chlamydial heat shock proteins and trachoma. Infect. Immun. 58,3061–3063 (1990).
  • Hassell AB, Reynolds DJ, Deacon M, Gaston JSH, Pearce JH. Identification of T-cell stimulatory antigens of Chlamydia trachomatis using synovial fluid-derived T-cell clones. Immunol. 73,513–519 (1993).
  • Wang S, Grayston JT. Three new serovars of Chlamydia trachomatis: Da, Ia and L2a. I Infect. Dis. 163,403-405 (1991).
  • Rockey DD, Stephens RS. Genome sequencing and our understanding of chlamydiae. Infect. Immun. 68(10), 5473–5479 (2000).
  • Schachter J. Overview of Chlamydia trachomatis infection and the requirements for a vaccine. Rev Infect. Dis.7, 713–716 (1985).
  • Katz BP, Batteiger BE, Jones RB. Effect of prior sexually transmitted disease on the isolation of Chlamydia trachomatis. Sex. Transm. Dis. 14,160–164 (1987).
  • •Statistical evidence for the induction of protective immunity following a natural infection.
  • Bailey R, Duong T, Carpenter R, Whittle H, Mabey D. The duration of human ocular Chlamydia trachomatis infection is age dependent. Epidemiol Infect. 123(3), 479–486 (1999).
  • Woolridge RL, Grayston JT, Chang IH, Yang CY, Cheng KH. Long-term follow-up of the initial (1959–1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol 63,1650–1655 (1967).
  • Rodolaki A, Salinas J, Papp J. Recent advances on ovine chlamyclial abortion. Vet. Res. 29(3–4), 275–288 (1998).
  • Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. Infect. Immun. 70(6), 2741–2751 (2002).
  • De la Maza LM, Peterson EM. Vaccines for Chlamydia trachomatis infections. CUIT: Opin. Investig Drugs 3(7), 980–986 (2002).
  • Loomis PW, Starnbach MN, T-cell responses to Chlamydia trachomatis. CUIT: Opin. Mfavbiol 5,87–91 (2002).
  • Igietseme JU, Black CM, Caldwell HD. Chlamydia vaccine: strategies and status. BioDrugs 16 (1), 19–35 (2002).
  • Murdirr, AD, P Dunn, R Sodoyer et al Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis. 181, S544 (2000).
  • •Identification of protective antigens and the use of DNA immunization in chlarnydia vaccines.
  • Perry LL, Su H, Feilzer K etal Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. I Immuno1.162(6), 3541–3548 (1999).
  • Morrison RP Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma interferon. Infect. Immun. 68(10), 6038–6040 (2000).
  • Byrne GI. Immunity to Chlamydia. In: Chlamyclial Infections. Stephens RS, Byrne GI, Christainsen G eta]. (Fds) . (1998).
  • Yang X, Brunham RC. Role of T-cell-mediated immunity in host defense against Chlamydia trachomatis and its implication for vaccine development. Can. J. Infect. Dis. 9,99 (1998).
  • Perry LL, Feilzer K, Caldwell HD. Immunity to Chlamydia trachomatisis mediated by T-helper 1 Cells through IFN-gamma-dependent and -independent pathways. J. Immund 158 (7), 3344–3352 (1997).
  • Johansson M, Schon K, Ward M, Lycke N. Studies in knockout mice reveal that antichlamyclial protection requires TH1 cells producing IFN-gamma: is this true for human? Scand j Immunol 46 (6), 546–552 (1997).
  • Igietseme JU, Ramsey KM, Magee DM etal. Resolution of murine chlamyclial genital infection by the adoptive transfer of a biovar-specific, Thl lymphocyte clone. Rwional Immunology5, 317–324 (1993).
  • Lampe ME, Wilson CB, Bevan MJ, Starnbach MN. Gamma interferon production by cytotoxic T-lymphocytes is required for resolution of Chlamydia trachomatis infection. Infect. Immun. 66(11), 5457–5461 (1998).
  • Buzoni-Gatel D, Guilloteau L, Bernard F etal. Protection against Chlamyclia psittaci in mice conferred by Lyt2+ T-cells Immunol 77, 284–288 (1992).
  • Stagg AJ. Vaccines against Chlamydia: approaches and progress. Md. Med. Today 4(4), 166–173 (1998).
  • Cohen CR, Nguti R, Bukusi EA etal. Human immunodeficiency virus Type 1-infected women exhibit reduced interferon-gamma after Chlamydia trachomatis stimulation of peripheral lymphocytes. J. Infect. Dis. 182(6), 1672–1677 (2000).
  • Bailey RL, Kajbaf M, Whittle HC, Ward ME, Mabey DC. The influence of local antichlamyclial antibody on the acquisition and persistence of human ocular chlamyclial infection: IgG antibodies are not protective. Epidemiol Infect. 111(2), 315–324 (1993).
  • ••Confirmed the obligatory requirement foreffectors of CMI in chlarnydial control in humans.
  • Debattista J,Timms P, Allan J, Allan J. Reduced levels of gamma-interferon secretion in response to chlamyclial 60 kDa heat shock protein amongst women with pelvic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol Lett. 81(3), 205–210 (2002).
  • •Role of Thl response in chlarnydial control in humans.
  • Cohen CR, Plummer FA, Mugo N, etal Increased interleuldn-10 in the endocervical secretions of women with non-ulcerative sexually transmitted diseases: amechanism for enhanced HIV-1 transmission? AIDS25(3), 327–332 (1999).
  • •Role of Thl response in chlarnydial control in humans.
  • Kroon FP, Van't Wout JW, Weiland HT, Van Furth R Chlamydia trachomatis pneumonia in an HIV-seropositive patient. N. Engl. Med 320,806–807 (1989).
  • •Role of Thl response in chlarnydial control in humans.
  • Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell A. The role of IFN-gamma in the outcome of chlamyclial infection. CUIT: Opin. Immunol 14(4), 444–451 (2002).
  • Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect. Immun 53,347–351 (1986).
  • Hohmann H, Shemer-Avni Y, Wessel K, Sarov I, Wallach D. Inhibition of growth of Chlamydia trachomatis by tumor necrosis factor is accompanied by increased prostaglandin synthesis. Infect. Immun. 58, 3168–3172 (1990).
  • Zhong G, de la Maza LM. Activation of mouse peritoneal macrophages in vitro or in vivo by recombinant murine gamma interferon inhibits the growth of Chlamydia trachomatisserovar Li. Infect. Immun. 56, 3322–3325 (1988).
  • Chen B, Stout R, Campbell WE Nitric oxide production: a mechanism of Chlamydia trachomatis inhibition in interferon-gamma-treated RAW264.7 cells. FEMS Immunol Med. Mfavbiol 14(2–3), 109–120 (1996).
  • Byrd TF, Horwitz MA. Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Co-ordinate upregulation by iron transferrin and downregulation by interferon gamma..! Clin. Invest. 91,969–976 (1993).
  • Raulston JW. Response of Chlamydia trachoma& serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect. Immun. 65(11), 4539–4547 (1997).
  • Freidank HM, Billing H, Wiedmann-Al-Ahmad M. Influence of iron restriction on Chlamydia pneumoniae and C trachomatis. J. Med. Mcrobiol 50(3), 223–227 (2001).
  • Igietseme JU, Ananaba GA, Candal DH, Lyn D, Black CM. Immune control of chlamydial growth in the human epithelial cell lineRT4 involves multiple mechanisms that include nitric oxide induction, tryptophan catabolism and iron deprivation. Mcrobiol Immunol 42(9), 617–625 (1998).
  • •Demonstrated the role of three cytokine-inducible antimicrobial processes in chlamydial clearance.
  • Stagg AJ, Tuffrey M, Woods C, Wunderink C, Knight SC. Protection against ascending infection of the genital tract by Chlamydia trachomatisis associated with recruitment of major histocompatibility complex class II antigen-presenting cells into uterine tissue. Infect. Immun. 66(8), 3535–3544 (1998).
  • Neutra MR, Pringault E, Kraehenbuhl J-P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Ann. Rev Immunol 14,275–300 (1996).
  • Ojcius, DM, Y Bravo de Alba, JM Kanellopoulos et al Internalization of Chlamydia by dendritic cells and stimulation of Ch/amydia-specific T-cells. Immunol 160(3), 12970–1303 (1998).
  • Su H, Messer R, Whitmire W eta]. Vaccination against Chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. Exp. Med. 188(5), 809–818 (1998).
  • Matyszak MK, Young JL, Gaston JSH. Uptake and processing of Chlamydia trachomatis by human dendritic cells. Eur. Immunol 32,742–751 (2002).
  • Jenkins MK, DeSilva DR, Johnson JG, Norton SD. Costimulating factors and signals relevant for antigen-presenting cell function. Adv Exp. Med. Biol. 329,87–92 (1993).
  • Morrison SG, Morrison MP. Resolution of secondary Chlamydia trachomatisgenital tract infection in immune mice with depletion of both CD4+ and CD8+ T-cells. Infect. Immun. 69(4), 2643–2649 (2001).
  • Morrison SG, Su H, Caldwell HD, Morrison RP Immunity to murine Chlamydia trachomatis genital tract reinfection involves B-cells and CD(+) T-cells but not CD8(+) T-cells. Infect. Immun. 68(12), 6979–6987 (2000).
  • Grayston JT, Wang SP, Yang YF, Woolridge RL. The effect of trachoma virus vaccine on the course of experimental trachoma infection in blind human volunteers.' Exp. Med. 115,1009–1022 (1962).
  • Grayston JT, Wang SP. The potential for vaccine against infection of the genital tract with Chlamydia trachomatis. Sex. Trarism. Dis. 5,73–77 (1978).
  • Yang X, Brunham RC. Gene knockout B-cell-deficient mice demonstrate that B-cells play an important role in the initiation of T-cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection. J. Immunol 161(3), 1439–1446 (1998).
  • Pal S, Theodor I, Peterson EM, de la Maza LM. Monoclonal immunoglobulin A antibody to the major outer membrane protein of Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine 15(5), 575–582 (1997).
  • Cotter TW, Meng Q, Shen Z-L eta]. Protective efficacy of outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect. Immun. 63, 4704–4714 (1995).
  • Moore, T, GA Ananaba, J Bolier eta]. Fc Receptors regulation of protective immunity against Chlamydia trachomatis Immunol 105 (2), 213–221 (2002).
  • ••The role of FcR-mediated processes inThl activation.
  • Su H, Parnell M, Caldwell HD. Protective efficacy of a parenterally administered MOMP-derived synthetic oligopeptide vaccine in a murine model of Chlamydia trachomatis genital tract infection: serum neutralizing IgG antibodies do not protect against genital tract infection. Vaccine 13(11), 1023–1032 (1995).
  • Igietseme JU, Uriri IM, Kumar SN eta]. Route of Infection That Induces a High Intensity of Gamma Interferon-Secreting T-cells in the Genital Tract Produces Optimal Protection Against Chlamydia trachomatis Infection in Mice. Infect. Immun 66 (9), 4030–4035 (1998).
  • Johansson M, Schon K, Ward M, Lycke N, Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect. Immun. 65(3), 1032–1044 (1997).
  • ••Confirmed the obligatory requirement foreffectors of CMI in chlamydial control.
  • Cotter TVV, Ramsey KH, Miranpuri GS, Poulsen CE, Byrne GI. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65 (6), 2145–2152 (1997).
  • ••Confirmed the obligatory requirement foreffectors of CMI in chlamydial control.
  • Igietseme JU, Ananaba GA, Bolier J etal. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for enhanced specific Thl induction: potential for cellular vaccine development. J. Immunol 164(4), 4212–4219 (2000).
  • •Requirement for a high frequency of Thl cells in establishment of protective immunity.
  • Yang X, Gartner J, Zhu L, Wang S.
  • •BrunhamRC. IL-10 Gene Knockout Mice Show Enhanced Thl -Like Protective Immunity and Absent Granuloma Formation Following Chlamydia trachomatis Lung Infection. J. Immunol 162,1010–1017 (1999).
  • Wang S, Fan Y, Brunham RC, Yang X. •IFN-gamma knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection. Eur. Immunol 29(11), 3782–3792 (1999).
  • Igietseme JU, Ananaba GA, Bolier J et al. The intercellular adhesion molecule Type -1 is required for rapid activation of T-helper type 1 (Thl) lymphocytes that control early acute phase of genital chlamydial infection in mice. Immunol 98(4), 510–519 (1999).
  • Mahdi OS. Impact of host genetics on susceptibility to human Chlamydia trachomatis disease. Br. J. Domed. Li. 59(2), 128–132 (2002).
  • Bobo LD, Novak N, Munoz B eta]. Severe disease in children with trachoma is associated with persistent Chlamydia trachomatisinfection. j Infect. Dis. 176 (6), 1524–1530 (1997).
  • Fan T, Lu H, Hu H et al. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. Exp. Med. 187(4), 487–496 (1998).
  • Zhong G, Liu L, Fan T, Fan P, Ji H. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. j Exp. Med. 191(9), 1525–1534 (2000).
  • Bachmaier K, Neu N, de la Maza LM eta]. Chlamydia infections and heart disease linked through antigenic mimicry. Science 283,1335–1339 (1999).
  • Brunham RC, Zhang DJ. Transgene as vaccine for Chlamydia. Am. Heart 138, S519—S522 (1999).
  • Grayston JT, Wang S-P, Yeh LF, Kuo C. Importance of reinfection in the pathogenesis of trachoma. Rev Infect. Dis. 7, 717–725 (1985).
  • Lagrange PH, Hurtrel B, Stach JL. Vaccines against mycobacteria and other intracellular bacteria. Ann. Inst. Pasteur Immunol 136D(2), 151–162 (1985).
  • Su H, Messer R, Whitmire W Hughes S, Caldwell HD. Subclinical chlamyclial infection of the female mouse genital tract generates a potent protective immune response: implications for development of live attenuated chlamyclial vaccine strains. Infect. Immun. 68(1), 192–196 (2000).
  • O'Connell CMC, Maurelli AT Introduction of foreign DNA into Chlamydia and stable expression of chloramphenicol resistance. Chlamyclial Infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infection. Stephens RS, Byrne GI, Christainsen G eta] (Frls). Berkeley, San Francisco, CA, USA (1998).
  • Tam JE, Davis CH, VVyrick PB. Expression of recombinant DNA introduced into Chlamydia trachomatisby electroporation. Can. M'crobiol 40(7), 583–591 (1994).
  • VVylie JL, Wang LL, Tipples G, McClarty G. A single point mutation in CTP synthetase of Chlamydia trachomatisconfers resistance to cyclopentenyl cytosine. J. Biol. Chem. 271(26), 15393–15400 (1996).
  • Chalmers WS, Simpson J, Lee SJ, Baxendale W Use of a live chlamyclial vaccine to prevent ovine enzootic abortion. Vet Rec 141(3), 63–67 (1997).
  • Kalman S, Mitchell W Marathe R eta]. Comparative genomes of Chlamydia pneumoniae and C trachomatis. Nat. Genet. 21(4), 385–389 (1999).
  • Read TD, Brunham RC, Shen C et a/. Genome sequence of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acid Res. 28(6), 1397–1406 (2000).
  • Stephens RS. Chlamyrlial Genomics and Vaccine Antigen Discovery. J. Infect. Dis. 181\(Suppl. 3)5521–5523 (2000).
  • Stephens RS, Kalman S, Lammel C eta]. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282 (5389), 754–759 (1998).
  • Belland RJ, Scidmore ma, Crane DD eta]. Chlamydia trachoma& cytotoxicity associated with complete and partial cytotoxin genes. PNAS98 (24), 13984–13989 (2001).
  • Ward ME. Chlamyclial vaccine — future trends. J. Infect. (Suppl. 1), 11–26 (1992).
  • Su H, Watkins NG, Zhang Y-X, Caldwell HD. Chlamydia trachomatis-host cell interactions: Role of the chlamyclial major outer membrane protein as an adhesin. Infect. Immun. 58,1017-1025 (1990).
  • Wyllie S, Longbottom D, Herring AJ, Ashley RH. Single channel analysis of recombinant major outer membrane protein porins from Chlamydia psittaci and Chlamydia pneumoniae. FEBS Lett. 445 (1), 192–196 (1999).
  • Baehr W Zhang Y-X, Joseph T et al. Mapping antigenic domains expressed by Chlamydia trachoma & major outer membrane protein genes. Proc. Nati Acad. Li. USA 85,4000–4004 (1988).
  • Dong-Ji Z, Yang X, Shen C eta]. Priming with Chlamydia trachomatis major outer membrane protein (MOMP) DNA followed by MOMP-ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Thl cellular immune responses. Infect. Immun. 68(6), 3074–3078 (2000).
  • Jackson JVV, Maisonneuve J, Taylor RB et al. Immunization with a high molecular weight protein (pmpG) from Chlamydia trachomatis confers heterotypic protection against infertility. In: 101st General Meeting of ASM, Orlando, FL, USA (2001).
  • Jen SS, Stromberg EJ, Probst P, Bhatia A, Skeiky YAW Discovery of new vaccine candidates for prevention and treatment of Chlamydia. In: 101st General Meeting of ASIVI, Orlando, FL, USA (2001).
  • Stephens RS, Lammel CJ. Chlamydia outer membrane protein discovery using genomics. CUIT: Opin. IVlicrobiol 4(1), 16–20 (2001).
  • Kawa DE, Stephens RS. Antigenic topology of chlamyclial PorB protein and identification of targets for immune neutralization of infectivity. J. Immunol 168(10), 5184–5191 (2002).
  • Ramsey KH, Cotter TVV, Salyer RD et al. Prior genital infection with a murine or human biovar of Chlamydia trachomatis protects mice against heterotypic challenge infection. Infect. Immun. 67(6), 3019–3025 (1999).
  • Pal S, Theodor I, Peterson EM, de la Maza LM. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune respose against a genital challenge. Infect. Immun. 69 (10), 6240–6247 (2001).
  • Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46,82–87 (1998).
  • Hajek R, Butch AW. Dendritic cell biology and the application of dendritic cells to immunotherapy of multiple myeloma. Med. Oncol 17(1), 2–15 (2000).
  • Reid CDL. The biology and clinical applications of dendritic cells. Trans! Med. 8,77–86 (1998).
  • Rank RG. Models of immunity. In: Chlamydia: intracellular biology, pathogenesis and immunity. Stephens RS (Ed). ASM Press, Washington, DC, USA (1999).
  • Svanholm C, Bandholtz L, Castanos-Velez E, Wigzell H, Rottenberg ME. Protective DNA immunization against Chlamydia pneumoniae. Scand. I Immunol 51(4), 345–353 (2000).
  • Brunham RC, Zhang DJ, Yang X, McClarty GM. The potential for vaccine development against chlamyclial infection and disease. J. Infect. Dis. 181 (Suppl. 3), S538—S543 (2000).
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application and optimization. Ann. Rev Immunol 18, 927–974 (2000).
  • Pal S, Barnhart KM, Wei Q eta]. Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against genital challenge. Vaccinel7 (5), 459–465 (1999).
  • Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine 17(1), 19–25 (1999).
  • Iwasaki A, Stiernholm BJ, Chan AK, Bernstein NL, Barber BH. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines . j Immunol 158(10), 4591–4601 (1997).
  • Gurunathan S, Irvine KR, Wu CY etal. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J. Immunol 161(9), 4563–4571 (1998).
  • Murdin AD, Su H, Klein MH, Caldwell HD. Poliovirus hybrids expressing neutralization epitopes from variable domains I and IV of the major outer membrane protein of Chlamydia tracbomatis elicit broadly cross-reactive C trachomatis-neutralizing antibodies. Infect. Immun. 63(3), 1116–1121 (1995).
  • Babiuk LA, Tilcoo SK. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J. Biotechnol 83 (1-2), 105–113 (2000).
  • Hewson R RNA viruses: emerging vectors for vaccination and gene therapy. Mol Med. Today 6 (1), 28–35 (2000).
  • Bennink JR, Yewdell JW. Recombinant vaccinia viruses as vectors for studying T-lymphocyte specificity and function. CUIT: Top. M'crobiol. Immunol 163,153–184 (1990).
  • Schlesinger S, Dubensky TW. Alphavirus vectors for gene expression and vaccine. CUIT: Opin. Biotechnol 10,434–439 (1999).
  • Singh M, O'Hagan D. Advances in vaccine adjuvants. Nat. Bioteclinol 17(11), 1075–81(1999).
  • Pal S, Davis HL, Peterson EM, de la Maza LM. Immunization with the Chlamydia tracbomatis mouse pneumonitis major outer membrane protein by use of CpG oligodeoxynudeotides as an adjuvant induces a protective immune response against an intranasal challenge. Infect. Immun. 70(9), 4812–4817 (2002).
  • Turner MS, Giffard PM. Expression of Chlamydia psittaci- and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus fermentum BR11 as fusion to bspA. Infect. Immun. 67(10), 5486–5489 (1999).
  • Gentschev I, Dietrich G, Spreng S eta]. Delivery of protein antigens and DNA by virulence-attenuated strains of Salmonella Ophimulium and Listeria monocytogenes. Biotechnol 83(1-2), 19–26 (2000).
  • Eko FO, Witte A, Huter V eta]. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 17,1643–1649 (1999).
  • Eko FO, Lubitz W, MacMillan L eta]. Recombinant Vibrio cholerae ghost as delivery vehicle for vaccinating against Chlamydia tracbomatis. Vaccine. In press (2002).
  • Szostak MP, Hensel A, Eko FO eta]. Bacterial ghosts: non-living candidate vaccines. J. Bacteria 44,17–161 (1996).
  • Heijnen IAFM, van Vugt MJ, Fanger NA etal. Antigen targeting to myeloid-specific human Fc1RI/CD64 triggers enhanced antibody responses in transgenic mice. Clin. Invest. 97(2), 331–338 (1996).
  • Gosselin EJ, Wardwell K, Gosselin DR etal. Enhanced antigen presentation using human Fcy receptor (monocyte/ macrophage) -specific immunogens. Immunol 149,3477–3481 (1992).
  • Prabhala RH, Wira CR Sex hormone and IL-6 regulation of antigen presentation in the female reprodutive mucosal tissues. J. Immunol 155,5566–5573 (1995).
  • Lezzi G, Scotet E, Scheidegger D, Lanzavecchia A. The interplay between the duration of TCR and cytokine signaling determines T-cell polarization. Eur. Immunol 29,4029–4101 (1999).
  • Yang X, HayGlass KT, Brunham RC. Genetically determined differences in IL-10 and IFN-y responses correlate with clearance of Chlamydia tracbomatis mouse pneumonitis infection. J. Immunol 156, 4338–4344 (1996).
  • Belay T, Eko FO, Ananaba GA eta]. Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect. Immun. 70(2), 844–850 (2002).
  • Maxion HK, Kelly KA. Chemokine expression patterns differ within anatomically distinct regions of the genital tract during Chlamydia trachomatis infection. hired. Immun. 70(3), 1538–1546 (2002).
  • Darville T, Andrews J, Sikes JD, Fraley PL, Rank RG. Early local cytokine profiles in strains of mice with different outcomes from chlamydial genital tract infection. Infect. Immun. 69(6), 3556–3561 (2001).
  • Beatty PR, Stephens RS. CD8+ T-lymphocyte-mediated lysis of Chlamydia-infected L cells using an endogenous antigen pathway. J. Immunol 153,4588–4595 (1994).
  • Wu H-Y, Russell MW Nasal Lymphoid Tissue, Intranasal Immunization and Compartmentalization of the Common Mucosal Immune System. Immunol Res. 16,187–201 (1997).
  • Holmgren J, Czerkinsky C, Lycke N, Svennerholm A-M. Mucosal immunity: implications for vaccine development. Immunobiology184,157–179 (1992).
  • McGhee JR, Mestecky J, Dertzbaugh MT etal. The mucosal immune system: From fundamental concepts to vaccine development. Vaccine 10,75–88 (1992).
  • Pal S, Peterson EM, de la Maza LM. Intranasal immunization induces long-term protection in mice against a Chlamydia tracbomatisgenital challenge. Infect. Immun. 64,5341–5348 (1996).
  • Pal S, Theodor I, Peterson EM, del Maza LM. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia tracbomatis induces protection against a genital challenge. Infect. Immun. 65,3361–3369 (1997).
  • Wu H-Y, Nikolova EB, Beagley KW Russell MW. Induction of antibody-secreting cells and T-helper and memory cells in murine nasal lymphoid tissue. Immunol 88,493–500 (1996).
  • Gallichan WS. Specific secretory immune responses in the female genital tract following intranasal immunization with a recombinant adenovirus expressing glycoprotein B of herpes simplex virus. Vaccine 13,1589–1595 (1995).
  • Staats HF, Montgomery SP, Pacer TJ. Intranasal immunization is superior to vaginal, gastric, or rectal immunization for induction of systemic and mucosal anti-HIV antibody responses. AIDS Res. Hum. Retmviruses 13,945–952 (1997).
  • Bonecchi R, Bianchi G, Bordignon PP etal. Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T-helper Cells (This) and Th2s Exp. Med. 187(1), 129–134 (1998).
  • Igietseme JU, Rank RG. Susceptibility to reinfection after a primary chlamydial genital infection is associated with a decrease of antigen-specific T-cells in the genital tract. hied. Immun. 59,1346–1351 (1991).
  • •Strong evidence that protective immunity coincides with the presence of specific T-cells in the mucosal site of infection.
  • Kelly KA, Rank RG. Identification of homing receptors that mediate the recruitment of CD4 T-cells to the genital tract following intravaginal infection with Chlamydia trachomatis. Infect. Immun. 65(12), 5198–5208 (1997).
  • Igietseme JU, Portis JL, Perry LL. Inflammation and clearance of Chlamydia trachomatisin enteric and nonenteric mucosae. Infect. Immun 69 (3), 1832–1840 (2001).
  • Igietseme JU, Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect. Immun. 68 (12), 6798–6806 (2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.