186
Views
3
CrossRef citations to date
0
Altmetric
Review

The potential of plants for the production and delivery of human papillomavirus vaccines

&

References

  • Johnson KM, Kines RC, Roberts JN, et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 2009;83:2067-74
  • zur Hausen J. Papillomavirus causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst 2000;92:690-8
  • Stanley M, Lowy DR, Frazer I. Chapter 12: prophylactic HPV vaccines: underlying mechanisms. Vaccine 2006;24:S106-13
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2014;136(5):E359-86
  • Doorbar J. The papillomavirus life cycle. J Clin Virol 2005;32:S7-15
  • zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002;2:342-50
  • Yim EK, Park JS. The Role of HPV E6 and E7 Oncoproteins in HPV-associated Cervical Carcinogenesis. Cancer Res Treat 2005;37(6):319-24
  • Crook T, Tidy JA, Vousden KH. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 1991;67:547-56
  • Jones DL, Munger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators. Semin Cancer Biol 1996;7:327-37
  • Lipinski MM, Jacks T. The retinoblastoma gene family in differentiation and development. Oncogene 1999;18:7873-82
  • Muñoz N, Castellsagué X, de González AB, et al. Chapter 1: HPV in the etiology of human cancer. Vaccine 2006;24:S3/1-10
  • Wilczynski SP, Oft M, Cook N, et al. Human papillomavirus type 6 in squamous cell carcinoma of the bladder and cervix. Hum Pathol 1993;24:96-102
  • Cogliano V, Baan R, Straif K, et al. Carcinogenicity of human papillomaviruses. Lancet Oncol 2005;6:204
  • Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect Agents Cancer 2009;4:8
  • Castellsagué X, Díaz M, de Sanjosé S, et al. Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors: implications for screening and prevention. J Natl Cancer Inst 2006;98:303-15
  • Ho GY, Bierman R, Beardsley L, et al. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 1998;338:423-8
  • Clifford GM, Gallus S, Herrero R, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 2005;366:991-8
  • Castellsague X, Bosch FX, Munoz N. The male role in cervical cancer. Salud Publica Mex 2003;45:S345-53
  • Bruni L, Barrionuevo-Rosas L, Albero G, et al. ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. Summary Report 2014-12-18. Accessed March 06 2015
  • Castellsague X, Bosch FX, Munoz N, et al. Male circumcision, penile human papillomavirus infection, and cervical cancer in female partners. N Engl J Med 2002;346:1105-12
  • Bleeker MC, Hogewoning CJ, Voorhorst FJ, et al. Condom use promotes regression of human papillomavirus-associated penile lesions in male sexual partners of women with cervical intraepithelial neoplasia. Int J Cancer 2003;107:804-10
  • Hogewoning CJ, Bleeker MC, van Den Brule AJ, et al. Condom use promotes regression of cervical intraepithelial neoplasia and clearance of human papillomavirus: a randomized clinical trial. Int J Cancer 2003;107:811-16
  • Garcia-Closas R, Castellsague X, Bosch X, et al. The role of diet and nutrition in cervical carcinogenesis: A review of recent evidence. Int J Cancer 2005;117:629-37
  • Smith JS, Herrero R, Bosetti C, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst 2002;94:1604-13
  • Smith JS, Bosetti C, Munoz N, et al. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int J Cancer 2004;111:431-9
  • Snijders PJ, Steenbergen RD, Heideman DA, et al. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol 2006;208:152-64
  • Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 2004;4:46-54
  • Lin K, Doolan K, Hung CF, et al. Perspectives for preventive and therapeutic HPV vaccines. J Formos Med Assoc 2010;109:4-24
  • Scott M, Nakagawa M, Moscicki AB. Cell-Mediated Immune Response to Human Papillomavirus Infection. Clin Vaccine Immunol 2001;8:209-20
  • Conesa-Zamora P. Immune responses against virus and tumor in cervical carcinogenesis: treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol 2013;131:480-8
  • Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004;4:211-22
  • World Health Organization. Deparment of Reproductive Health and Research (2008) Cervical cancer, human papillomavirus (HPV), and HPV vaccines – Key points for policy-makers and health professionals. Geneva, Switzerland: 2008
  • Tjalma WA, Arbyn M, Paavonen J, et al. Prophylactic human papillomavirus vaccines: the beginning of the end of cervical cancer. Int J Gynecol Cancer 2004;14:751-61
  • Trimble CL, Frazer IH. Development of therapeutic HPV vaccines. Lancet Oncol 2009;10:975-80
  • Day PM, Thompson CD, Buck CB, et al. Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 2007;81:8784-92
  • Schiffman M, Wacholder S. Success of HPV vaccination is now a matter of coverage. Lancet Oncol 2012;13:10-12
  • Mandic A. Primary prevention of cervical cancer: prophylactic human papillomavirus vaccines. J BUON 2012;17:422-7
  • Hopkins TG, Wood N. Female human papillomavirus (HPV) vaccination: global uptake and the impact of attitudes. Vaccine 2013;31:1673-9
  • Future II Study Group. Efficacy of a quadrivalent HPV types 8/11/16/18) L1 virus-like particle vaccine in the prevention of cervical intraepithelial neoplasia grades 2/3 and adenocarcinoma in situ: a randomized controlled trial. N Engl J Med 2007;356:1915-27
  • Cutts FT, Franceschi S, Goldie S, et al. Human papillomavirus and HPV vaccines: a review. Bull World Health Organ 2007;85(9):719-26
  • Paavonen J, Jenkins D, Bosch X, et al. Efficacy of a prophylactic adjuvanted L1 VLP vaccine against infection with HPV16 and 18 in young women: an interim analysis of a Phase III double-blind, randomized controlled trial. Lancet 2007;369:2161-70
  • Petaja T, Keränen H, Karppa T, et al. Immunogenicity and safety of human papillomavirus (HPV)-16/18 AS04 adjuvanted vaccine in healthy boys aged 10–18 years. J Adolesc Health 2009;44:33-41
  • Hillman RJ, Giuliano AR, Palefsky JM, et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin Vaccine Immunol 2012;19:261-7
  • Giordanella JP, Rouzier R. Coverage and compliance of human papilloma virus vaccines in Paris: demonstration of low compliance with non school-based approaches. J Adolesc Health 2010;47:237-41
  • Taylor R, Hariri S, Sternberg M, et al. Human papillomavirus vaccine coverage in the United States: national health and nutrition examination Survey, 2007-2008. Prev Med 2011;52:398-400
  • Malmqvist E, Natunen K, Lehtinen M, et al. Just implementation of human papillomavirus vaccination. J Med Ethics 2012;38:247-9
  • Lehtinen M, Nieminen P, Apter D, et al. Immunogenicity, efficacy, effectiveness and overall impact of HPV Vaccines. Borruto F, De Ridder M, Editors HPV and cervical cancer: achievements in prevention and future prospects. Springer Science+Business Media, LLC, Springer-Verlag New York; 2012
  • Stanley M, Gissmann L, Nardelli-Haefliger D. Immunobiology of human papillomavirus infection and vaccination - implications for second generation vaccines. Vaccine 2008;26(Suppl 10):K62-7
  • Frazer IH, Leggatt GR, Mattarollo SR. Prevention and treatment of papillomavirus-related cancers through immunization. Annu Rev Immunol 2011;29:111-38
  • Frazer IH. The role of vaccines in the control of STDs: HPV vaccines. Genitourin Med 1996;72:398-403
  • Leggatt GR, Frazer IH. HPV vaccines: the beginning of the end for cervical cancer. Curr Opin Immunol 2007;19:232-8
  • Ressing ME, van Driel WJ, Brandt RM, et al. Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J Immunother 2000;23:255-66
  • Kaufmann AM, Stern PL, Rankin EM, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 2002;8:3676-85
  • Garcia F, Petry KU, Muderspach L, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 2004;103:317-26
  • Roden R, Wu TC. Preventative and therapeutic vaccines for cervical cancer. Expert Rev Vaccines 2003;2:495-516
  • Roden RB, Ling M, Wu TC. Vaccination to prevent and treat cervical cancer. Hum Pathol 2004;35:971-82
  • Tomson TT, Roden RB, Wu TC. Human papillomavirus vaccines for the prevention and treatment of cervical cancer. Curr Opin Investig Drugs 2004;5:1247-61
  • Mahdavi A, Monk BJ. Vaccines against human papillomavirus and cervical cancer: promises and challenges. Oncologist 2005;10:528-38
  • Peters C, Paterson Y. Enhancing the immunogenicity of bioengineered Listeria monocytogenes by passaging through live animal hosts. Vaccine 2003;21:1187-94
  • Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 2009;27:3975-83
  • Cheng WF, Hung CF, Hsu KF, et al. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum Gene Ther 2002;13:553-68
  • Daniell H, Singh ND, Mason H, et al. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 2009;14:669-79
  • Hefferon K. Plant virus expression vector development: new perspectives. Biomed Res Int 2014;2014:785382
  • Yusibov V, Streatfield SJ, Kushnir N. Clinical development of plant-produced recombinant pharmaceuticals Vaccines, antibodies and beyond. Hum Vaccines 2011;7:313-21
  • Hernández M, Rosas G, Cervantes J, et al. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014;13(12):1523-36
  • Rosales-Mendoza S, Salazar Gonzalez JA. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 2014;13(6):737-49
  • Scotti N, Rybicki EP. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2013;12:211-24
  • Giorgi C, Francooni R, Rybicki EP. Human papillomavirus vaccines in plants. Expert Rev Vaccines 2010;9:913-24
  • Lamichhane A, Azegami T, Kiyono H. The mucosal immune system for vaccine development. Vaccine 2014;32:6711-23
  • Warzecha H, Mason HS, Lane C, et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J Virol 2003;77:8702-11
  • Biemelt S, Sonnewald U, Galmbacher P, et al. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 2003;77:9211-20
  • Hongli L, Xukui L, Ting L, et al. Transgenic tobacco expressed HPV16-L1 and LT-B combined immunization induces strong mucosal and systemic immune responses in mice. Hum Vaccin Immunother 2013;9:83-9
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33:492-503
  • Franconi R, Di Bonito P, Dibello F, et al. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res 2002;62(13):3654-8
  • Franconi R, Massa S, Illiano E, et al. Exploiting the plant secretory pathway to improve the anticancer activity of a plant-derived HPV16 E7 vaccine. Int J Immunopathol Pharmacol 2006;19:187-97
  • Massa S, Franconi R, Brandi R, et al. Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 2007;25:3018-21
  • Venuti A, Massa S, Mett V, et al. An E7-based therapeutic vaccine protects mice against HPV16 associated cancer. Vaccine 2009;27:3395-7
  • Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009;27:1787-96
  • Paz De la Rosa G, Monroy-García A, Mora-García Mde L, et al. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol J 2009;6:2
  • Monroy-García A, Gómez-Lim MA, Weiss-Steider B, et al. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 2014;159:291-305
  • Whitehead M, Ohlschläger P, Almajhdi FN, et al. Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice. BMC Cancer 2014;14:367
  • Rosales-Mendoza S, Govea-Alonso DO, Monreal-Escalante E, et al. Developing plant-based vaccines against neglected tropical diseases: where are we? Vaccine 2012;31:40-8
  • Lakshmi PS, Verma D, Yang X, et al. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 2013;8:e54708
  • Govea-Alonso DO, Rybicki E, Rosales-Mendoza S. Plant-based vaccines as a global vaccination approach: current perspectives. Genetically engineered plants as a source of vaccines against wide spread diseases. Springer, Springer-Verlag New York; 2014. p. 265-80
  • Medical Monitor Merck Sharp & Dohme Corp. A randomized, international, double-blinded (With in-house blinding), controlled with GARDASIL, dose-ranging, tolerability, immunogenicity, and efficacy study of a multivalent human papillomavirus (HPV) L1 virus-like particle (VLP) vaccine administered to 16- to 26- year-old women. In: ClinicalTrials.gov [Internet]. 2014. Avaiable from http://clinicaltrials.gov/ct2/show/results/NCT00543543NMLIdentifier:NCT00543543 [Last accessed 16 April 2013]
  • Kiatpongsan S, Campos NG, Kim JJ. Potential Benefits of Second-Generation Human Papillomavirus Vaccines. PLoS ONE 2012;7:e48426
  • Wick DA, Webb JR. A novel, broad spectrum therapeutic HPV vaccine targeting the E7 proteins of HPV16, 18, 31, 45 and 52 that elicits potent E7-specific CD8T cell immunity and regression of large, established, E7-expressing TC-1 tumors. Vaccine 2011;29:7857-66
  • Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S. Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol Biol 2015; In press
  • Otvos LJr. Synthesis of a multivalent, multiepitope vaccine construct. Methods Mol Biol 2008;494:263-73
  • Jung ID, Jeong SK, Lee CM, et al. Enhanced efficacy of therapeutic cancer vaccines produced by co-treatment with Mycobacterium tuberculosis heparin-binding hemagglutinin, a novel TLR4 agonist. Cancer Res 2011;71:2858-70
  • Nezafat N, Ghasemi Y, Javadi G, et al. A novel multi-epitope peptide vaccine against cancer: an in silico approach. J Theor Biol 2014;349:121-34
  • Hajishengallis G, Connell TD. Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol 2013;152:68-77
  • Granell A, Fernández del-Carmen A, Orzáez D. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev Vaccines 2010;9:843-58
  • Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, et al. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 2008;6:427-41
  • Kohl TO, Hitzeroth II, Christensen ND, et al. Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 2007;7:56
  • Maclean J, Koekemoer M, Olivier AJ, et al. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 2007;88:1460-9
  • Cerovska N, Hoffmeisterova H, Moravec T, et al. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J Biosci 2012;37:125-33
  • Varsani A, Williamson AL, Rose RC, et al. Expression of Human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 2003;148:1771-86
  • Matić S, Rinaldi R, Masenga V, et al. Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 2011;11:106
  • Waheed MT, Thönes N, Müller M, et al. Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant Biotechnol J 2011;9:651-60
  • Waheed MT, Thönes N, Müller M, et al. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res 2011;20:271-82
  • Regnard GL, Halley-Stott RP, Tanzer FL, et al. High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 2010;8:38-46
  • Morgenfeld M, Segretin ME, Wirth S, et al. Potato virus X coat protein fusion to human papillomavirus 16 E7 oncoprotein enhance antigen stability and accumulation in tobacco chloroplast. Mol Biotechnol 2009;43:243-9
  • Pineo CB, Hitzeroth II, Rybicki EP. Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotechnol J 2013;11:964-75
  • Lenzi P, Scotti N, Alagna F, et al. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 2008;17:1091-102
  • Liu HL, Li WS, Lei T, et al. Expression of human papillomavirus type 16 L1 protein in transgenic tobacco plants. Acta Biochim Biophys Sin 2005;37:153-8
  • Matić S, Masenga V, Poli A, et al. Comparative analysis of recombinant Human Papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J 2012;10:410-21
  • Hassan SW, Waheed MT, Müller M, et al. Expression of HPV-16 L1 capsomeres with glutathione-S-transferase as a fusion protein in tobacco plastids: an approach for a capsomere-based HPV vaccine. Hum Vaccin Immunother 2014;10:2975-82
  • Morgenfeld M, Lentz E, Segretin ME, et al. Translational fusion and redirection to thylakoid lumen as strategies to enhance accumulation of human papillomavirus E7 antigen in tobacco chloroplasts. Mol Biotechnol 2014;56:1021-31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.