683
Views
66
CrossRef citations to date
0
Altmetric
Review

Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry

, , , &
Pages 63-76 | Published online: 09 Jan 2014

References

  • Tartaglia J, Pincus S, Paoletti E. Poxvirus-based vectors as vaccine candidates. Crit. Rev. Immunol.10(1), 13–30 (1990).
  • van Regenmortel MHV, Fauquet CM, Bishop DHL et al. Virus Taxonomy: The Classification and Nomenclature of Viruses. The Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, CA, USA (2000).
  • Bolte AL, Meurer J, Kaleta EF. Avian host spectrum of avipoxviruses. Av. Path.28, 415–432 (1999).
  • Doyle TM. Immunisation of fowls against fowlpox by means of pigeon pox virus. J. Comparative Pathol.43, 40–55 (1930).
  • Boulanger D, Green P, Jones B et al. Identification and characterization of three immunodominant structural proteins of fowlpox virus. J. Virol.76(19), 9844–9855 (2002).
  • Afonso CL, Tulman ER, Lu Z et al. The genome of fowlpox virus. J. Virol.74(8), 3815–3831 (2000).
  • Laidlaw SM, Skinner MA. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European fowlpox virus, with those of virulent American and European viruses. J. Gen. Virol.85, 305–322 (2004).
  • Boulanger D, Smith T, Skinner MA. Morphogenesis and release of fowlpox virus. J. Gen. Virol.81, 675–687 (2000).
  • Meiser A, Sancho C, Krijnse Locker J. Plasma membrane budding as an alternative release mechanism of the extracellular enveloped form of vaccinia virus from HeLa cells. J. Virol.77(18), 9931–9942 (2003).
  • Smith GL, Law M. The exit of vaccinia virus from infected cells. Virus Res.106(2), 189–197 (2004).
  • Boulanger D, Green P, Smith T, Czerny CP, Skinner MA. The 131-amino-acid repeat region of the essential 39-kilodalton core protein of fowlpox virus FP9, equivalent to vaccinia virus A4L protein, is nonessential and highly immunogenic. J. Virol.72(1), 170–179 (1998).
  • Mayr A, Mahnel H. Charakterisierung eines vom Rhinozeros isolierten Hühnerpockenvirus. Arch. Ges. Virusforsch.31, 51–60 (1970).
  • Nelson JB. The behaviour of pox viruses in the respiratory tract. IV. The nasal instillation of fowlpox virus in chickens and in mice. J. Exp. Med.74, 203–213 (1941).
  • Baxby D, Paoletti E. Potential use of nonreplicating vectors as recombinant vaccines. Vaccine10(1), 8–9 (1992).
  • Somogyi P, Frazier J, Skinner MA. Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology197(1), 439–444 (1993).
  • Mackett M, Smith GL, Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol.49(3), 857–864 (1984).
  • Binns MM, Avery R. Developing novel vaccines. Poultry Internatl28(8), 12–14 (1986).
  • Binns MM, Boursnell MEG, Tomley FM et al. Prospects for a novel genetically engineered vaccine against infectious bronchitis. Israeli J. Vet. Med.42, 124–127 (1986).
  • Boyle DB, Coupar BE. Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Res.10(4), 343–356 (1988).
  • Taylor J, Weinberg R, Kawaoka Y, Webster RG, Paoletti E. Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine6(6), 504–508 (1988).
  • Beard CW, Schnitzlein WM, Tripathy DN. Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses. Avian Dis.35(2), 356–359 (1991).
  • Taylor J, Weinberg R, Languet B, Desmettre P, Paoletti E. Recombinant fowlpox virus inducing protective immunity in nonavian species. Vaccine6(6), 497–503 (1988).
  • Taylor J, Trimarchi C, Weinberg R et al. Efficacy studies on a canarypox-rabies recombinant virus. Vaccine9(3), 190–193 (1991).
  • Moorthy VS, Imoukhuede EB, Keating S et al. Phase I evaluation of three highly immunogenic prime–boost regimens, including a 12-month reboosting vaccination, for malaria vaccination in Gambian men. J. Infect. Dis.189(12), 2213–2219 (2004).
  • Beaudette FR. Twenty years of progress in immunization against virus diseases of birds. J. Am. Vet. Med. Assoc.115, 234–244 (1949).
  • Hertig C, Coupar BE, Gould AR, Boyle DB. Field and vaccine strains of fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virology235(2), 367–376 (1997).
  • Mayr A. Verhalten von hühner-, tauben- und kanarienpockenviren im. küken nach intravenöser impfung. Zentralblatt für Bakteriologie, Parasitenkunde, Infectionskrankheiten und Hygiene179(2), 149–159 (1960).
  • Mayr A, Malicki K. Attenuierung von virulentem Hühnerpockenvirus in Zellkulturen und Eigenschaften des attenuierten Virus. Zbl. Vet. Med. B.B13(1), 1–13 (1966).
  • Kumar S, Boyle DB. A poxvirus bidirectional promoter element with early/late and late functions. Virology179(1), 151–158 (1990).
  • Srinivasan V, Schnitzlein WM, Tripathy DN. A consideration of previously uncharacterized fowlpox virus unidirectional and bidirectional late promoters for inclusion in homologous recombinant vaccines. Avian Dis.47(2), 286–295 (2003).
  • Zantinge JL, Krell PJ, Derbyshire JB, Nagy E. Partial transcriptional mapping of the fowlpox virus genome and analysis of the EcoRI L fragment. J. Gen. Virol.77(4), 603–614 (1996).
  • Qingzhong Y, Barrett T, Brown TD et al. Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine12(6), 569–573 (1994).
  • Amano H, Morikawa S, Shimizu H et al. Identification of the canarypox virus thymidine kinase gene and insertion of foreign genes. Virology256(2), 280–290 (1999).
  • Letellier C. Role of the TK+ phenotype in the stability of pigeonpox virus recombinant. Arch. Virol.131(3–4), 431–439 (1993).
  • Scheiflinger F, Falkner FG, Dorner F. Role •of the fowlpox virus thymidine kinase gene for the growth of FPV recombinants in cell culture. Arch. Virol.142, 2421–2431 (1997).
  • Kent SJ, Zhao A, Dale CJ et al. A recombinant avipoxvirus HIV-1 vaccine expressing interferon-γ is safe and immunogenic in macaques. Vaccine18(21), 2250–2256 (2000).
  • Boursnell ME, Green PF, Campbell JI et al. Insertion of the fusion gene from Newcastle disease virus into a nonessential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. J. Gen. Virol.71(3), 621–628 (1990).
  • Campbell JIA, Binns MM, Tomley FM, Boursnell MEG. Tandem repeated sequences within the terminal region of the fowlpox virus genome. J. Gen. Virol.70, 145–154 (1989).
  • Ogawa R, Calvert JG, Yanagida N, Nazerian K. Insertional inactivation of a fowlpox virus homologue of the vaccinia virus F12L gene inhibits the release of enveloped virions. J. Gen. Virol.74(1), 55–64 (1993).
  • Laidlaw SM, Anwar MA, Thomas W et al. Fowlpox virus encodes nonessential homologs of cellular α-SNAP, PC- 1, and an orphan human homolog of a secreted nematode protein. J. Virol.72(8), 6742–6751 (1998).
  • Binns MM, Britton BS, Mason C, Boursnell MEG. Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to A1 region: location of, and variation in, nonessential genes in poxviruses. J. Gen. Virol.71, 2873–2881 (1990).
  • Srinivasan V, Schnitzlein WM, Tripathy DN. Fowlpox virus encodes a novel DNA repair enzyme, CPD-photolyase, that restores infectivity of UV light-damaged virus. J. Virol.75(4), 1681–1688 (2001).
  • Singh P, Schnitzlein WM, Tripathy DN. Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability. J. Virol.77(10), 5855–5862 (2003).
  • Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc. Natl Acad. Sci. USA99(19), 12415–12420 (2002).
  • Scheiflinger F, Dorner F, Falkner FG. Construction of chimeric vaccinia viruses by molecular cloning and packaging. Proc. Natl Acad. Sci. USA89(21), 9977–9981 (1992).
  • Taracha EL, Bishop R, Musoke AJ, Hill AV, Gilbert SC. Heterologous priming–boosting immunization of cattle with Mycobacterium tuberculosis 85A induces antigen-specific T-cell responses. Infect. Immun.71(12), 6906–6914 (2003).
  • Falkner FG, Moss B. Transient dominant selection of recombinant vaccinia viruses. J. Virol.64(6), 3108–3111 (1990).
  • Yamaguchi T, Kaplan SL, Wakenell P, Schat KA. Transactivation of latent Marek’s disease herpesvirus genes in QT35, a quail fibroblast cell line, by herpesvirus of turkeys. J. Virol.74(21), 10176–10186 (2000).
  • Li X, Scaht KA. Quail cell lines supporting replication of Marek’s disease virus serotype 1 and 2 and herpesvirus of turkeys. Avian Dis.10, 4803–4812 (2004).
  • Cardona CJ, Nazerian K, Reed WM, Silva RF. Characterization of a recombinant fowlpox virus expressing the native hexon of hemorrhagic enteritis virus. Virus Genes22(3), 353–361 (2001).
  • Bayliss CD, Peters RW, Cook JK et al. A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Arch. Virol.120(3–4), 193–205 (1991).
  • Yoshida S, Fujisawa A, Tsuzaki Y, Saitoh S. Identification and expression of a Mycoplasma gallisepticum surface antigen recognized by a monoclonal antibody capable of inhibiting both growth and metabolism. Infect. Immun.68(6), 3186–3192 (2000).
  • Iritani Y, Aoyama S, Takigami S et al. Antibody response to Newcastle disease virus (NDV) of recombinant fowlpox virus (FPV) expressing a hemagglutinin-neuraminidase of NDV into chickens in the presence of antibody to NDV or FPV. Avian Dis.35(4), 659–661 (1991).
  • Boursnell ME, Green PF, Samson AC et al. A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge by NDV. Virology178(1), 297–300 (1990).
  • Edbauer C, Weinberg R, Taylor J et al. Protection of chickens with a recombinant fowlpox virus expressing the Newcastle disease virus hemagglutinin-neuraminidase gene. Virology179(2), 901–904 (1990).
  • Taylor J, Edbauer C, Rey-Senelonge A et al. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J. Virol.64(4), 1441–1450 (1990).
  • Swayne DE, Garcia M, Beck JR, Kinney N, Suarez DL. Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert. Vaccine18(11–12), 1088–1095 (2000).
  • Webster RG, Kawaoka Y, Taylor J, •Weinberg R, Paoletti E. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine9(5), 303–308 (1991).
  • Senne DA. Avian influenza in the western hemisphere including the Pacific Islands and Australia. Avian Dis.47(Suppl. 3), 798–805 (2003).
  • Calvert JG, Nazerian K, Witter RL, Yanagida N. Fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduce viremia in chickens. J. Virol.67(6), 3069–3076 (1993).
  • Wang X, Schnitzlein WM, Tripathy DN, Girshick T, Khan MI. Construction and immunogenicity studies of recombinant fowlpox virus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis.46(4), 831–838 (2002).
  • Tomley FM, Mockett AP, Boursnell ME et al. Expression of the infectious bronchitis virus spike protein by recombinant vaccinia virus and induction of neutralizing antibodies in vaccinated mice. J. Gen. Virol.68(9), 2291–2298 (1987).
  • Swayne DE, Beck JR, Kinney N. Failure of a recombinant fowlpox virus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowlpox vaccine. Avian Dis.44(1), 132–137 (2000).
  • Taylor J, Christensen L, Gettig R et al. Efficacy of a recombinant fowlpox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian Dis.40(1), 173–180 (1996).
  • Singh P, Kim TJ, Tripathy DN. Re-emerging fowlpox: evaluation of isolates from vaccinated flocks. Avian Pathol.29, 449–455 (2000).
  • Singh P, Kim TJ, Tripathy DN. Identification and characterization of fowlpox virus strains using monoclonal antibodies. J. Vet. Diagn. Invest.15(1), 50–54 (2003).
  • Shaw I, Davison TF. Protection from IBDV-induced bursal damage by a recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and chicken genotype. Vaccine18(28), 3230–3241 (2000).
  • Lee LF, Bacon LD, Yoshida S et al. The efficacy of recombinant fowlpox vaccine protection against Marek’s disease: its dependence on chicken line and B haplotype. Avian Dis.48(1), 129–137 (2004).
  • Deuter A, Southee DJ, Mockett AP. Fowlpox virus: pathogenicity and vaccination of day-old chickens via the aerosol route. Res. Vet Sci.50(3), 362–364 (1991).
  • Ariyoshi R, Takase K, Matsuura Y et al. Vaccination against fowlpox virus via drinking water.J. Vet. Med. Sci.65(10), 1127–1130 (2003).
  • Beard CW, Schnitzlein WM, Tripathy DN. Effect of route of administration on the efficacy of a recombinant fowlpox virus against H5N2 avian influenza. Avian Dis.36(4), 1052–1055 (1992).
  • Boyle DB, Heine HG. Influence of dose and route of inoculation on responses of chickens to recombinant fowlpox virus vaccines. Vet. Microbiol.41(1–2), 173–181 (1994).
  • Sharma JM, Zhang Y, Jensen D, Rautenschlein S, Yeh HY. Field trial in commercial broilers with a multivalent in ovo vaccine comprising a mixture of live viral vaccines against Marek’s disease, infectious bursal disease, Newcastle disease, and fowlpox. Avian Dis.46(3), 613–622 (2002).
  • Karaca K, Sharma JM, Winslow BJ et al. • Recombinant fowlpoxviruses coexpressingchicken Type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or posthatch administration of recombinant viruses. Vaccine16(16), 1496–1503 (1998).
  • Rautenschlein S, Sharma JM, Winslow BJ et al. Embryo vaccination of turkeys against Newcastle disease infection with recombinant fowlpox virus constructs containing interferons as adjuvants. Vaccine18(5–6), 426–433 (1999).
  • Tsukamoto K, Sato T, Saito S et al. Dual-viral vector approach induced strong and long-lasting protective immunity against very virulent infectious bursal disease virus. Virology269(2), 257–267 (2000).
  • Wild F, Giraudon P, Spehner D, Drillien R, Lecocq JP. Fowlpox virus recombinant encoding the measles virus fusion protein: protection of mice against fatal measles encephalitis. Vaccine8(5), 441–442 (1990).
  • Kent SJ, Zhao A, Best SJ et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus Type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol.72(12), 10180–10188 (1998).
  • Jenkins S, Gritz L, Fedor CH et al. Formation of lentivirus particles by mammalian cells infected with recombinant fowlpox virus. AIDS Res. Hum Retroviruses7(12), 991–998 (1991).
  • Radaelli A, Gimelli M, Cremonesi C, Scarpini C, De Giuli Morghen C. Humoral and cell-mediated immunity in rabbits immunized with live nonreplicating avipox recombinants expressing the HIV-1SF2 env gene. Vaccine12(12), 1110–1117 (1994).
  • Robinson HL, Montefiori DC, Johnson RP et al. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nature Med.5(5), 526–534 (1999).
  • Vazquez Blomquist D, Green P, Laidlaw SM et al. Induction of a strong HIV-specific CD8+ T-cell response in mice using a fowlpox virus vector expressing an HIV-1 multi-CTL-epitope polypeptide. Viral Immunol.15(2), 337–356 (2002).
  • Vazquez-Blomquist D, Iglesias E, Gonzalez-Horta EE, Duarte CA. The HIV-1 chimeric protein CR3 expressed by poxviral vectors induces a diverse CD8+ T-cell response in mice and is antigenic for PBMCs from HIV+ patients. Vaccine22(2), 145–155 (2003).
  • Dale CJ, De Rose R, Stratov I et al. Efficacy •of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. J. Virol.78(24), 13819–13828 (2004).
  • Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J. Vaccine therapy of established tumors in the absence of autoimmunity. Clin. Cancer Res.9(5), 1837–1849 (2003).
  • Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin. Cancer Res.9(8), 2973–2980 (2003).
  • Triozzi PL, Aldrich W, Allen KO et al. Antitumor activity of the intratumoral injection of fowlpox vectors expressing a triad of costimulatory molecules and granulocyte/macrophage colony stimulating factor in mesothelioma. Int. J. Cancer (2004).
  • Anderson RJ, Hannan CM, Gilbert SC et al. Enhanced CD8+ T-cell immune responses and protection elicited against Plasmodium berghei malaria by prime–boost immunization regimens using a novel attenuated fowlpox virus. J. Immunol.172(5), 3094–3100 (2004).
  • Prieur E, Gilbert SC, Schneider J et al. A Plasmodium falciparum candidate vaccine based on a six-antigen polyprotein encoded by recombinant poxviruses. Proc. Natl Acad. Sci. USA101(1), 290–295 (2004).
  • Vordermeier HM, Rhodes SG, Dean G et al. Cellular immune responses induced in cattle by heterologous prime–boost vaccination using recombinant viruses and bacille Calmette–Guerin. Immunology112(3), 461–470 (2004).
  • Mehdy Elahi S, Bergeron J, Nagy E et al. Induction of humoral and cellular immune responses in mice by a recombinant fowlpox virus expressing the E2 protein of bovine viral diarrhea virus. FEMS Microbiol. Lett.171(2), 107–114 (1999).
  • Gaddum RM, Cook RS, Furze JM, Ellis SA, Taylor G. Recognition of bovine respiratory syncytial virus proteins by bovine CD8+ T-lymphocytes. Immunology108(2), 220–229 (2003).
  • Ramsay AJ, Kent SJ, Strugnell RA et al. • Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol. Rev.171, 27–44 (1999).
  • Andrew ME, Coupar BE. Biological effects of recombinant vaccinia virus-expressed interleukin-4. Cytokine4(4), 281–286 (1992).
  • Sharma DP, Ramsay AJ, Maguire DJ, Rolph MS, Ramshaw IA. Interleukin-4 mediates downregulation of antiviral cytokine expression and cytotoxic T-lymphocyte responses and exacerbates vaccinia virus infection in vivo.J. Virol.70(10), 7103–7107 (1996).
  • Bembridge GP, Lopez JA, Cook R, Melero JA, Taylor G. Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T-lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or interferon-γ. J. Virol.72(5), 4080–4087 (1998).
  • Jackson RJ, Ramsay AJ, Christensen CD et al. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol.75(3), 1205–1210 (2001).
  • Leong KH, Ramsay AJ, Boyle DB, • Ramshaw IA. Selective induction of immune responses by cytokines coexpressedin recombinant fowlpox virus. J. Virol.68(12), 8125–8130 (1994).
  • Grosenbach DW, Barrientos JC, Schlom J, Hodge JW. Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res.61(11), 4497–4505 (2001).
  • Hanke T, Blanchard TJ, Schneider J et al. Immunogenicities of intravenous and intramuscular administrations of modified vaccinia virus Ankara-based multi-CTL epitope vaccine for human immunodeficiency virus Type 1 in mice. J. Gen. Virol.79(1), 83–90 (1998).
  • Brown M, Zhang Y, Dermine S et al. Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class I restricted T-lymphocyte activity. Gene Ther.7(19), 1680–1689 (2000).
  • Brown M, Davies DH, Skinner MA et al. Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors. Cancer Gene Ther.6(3), 238–245 (1999).
  • Drillien R, Spehner D, Hanau D. Modified vaccinia virus Ankara induces moderate activation of human dendritic cells. J. Gen. Virol.85(8), 2167–2175 (2004).
  • Moore KM, Davis JR, Sato T, Yasuda A. Reticuloendotheliosis virus (REV) long-terminal repeats incorporated in the genomes of commercial fowlpox virus vaccines and pigeon poxviruses without indication of the presence of infectious REV. Avian Dis.44(4), 827–841 (2000).
  • Jones D, Isfort R, Witter R, Kost R, Kung HJ. Retroviral insertions into a herpesvirus are clustered at the junctions of the short repeat and short unique sequences. Proc. Natl Acad. Sci. USA90(9), 3855–3859 (1993).
  • Isfort R, Jones D, Kost R, Witter R, Kung HJ. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc. Natl Acad. Sci. USA89(3), 991–995 (1992).
  • Isfort RJ, Qian Z, Jones D et al. Integration of multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a common target of integration. Virology203(1), 125–133 (1994).
  • Tulman ER, Afonso CL, Lu Z et al. The genome of canarypox virus. J. Virol.78(1), 353–366 (2004).
  • Kim TJ, Tripathy DN. Reticuloendotheliosis virus integration in the fowlpoxvirus genome: not a recent event. Avian Dis.45(3), 663–669 (2001).
  • Fang ZY, Limbach K, Tartaglia J et al. Expression of vaccinia E3L and K3L genes by a novel recombinant canarypox HIV vaccine vector enhances HIV-1 pseudovirion production and inhibits apoptosis in human cells. Virology291(2), 272–284 (2001).
  • Cheers C, Janas M, Ramsay A, Ramshaw I. Use of recombinant viruses to deliver cytokines influencing the course of experimental bacterial infection. Immunol. Cell Biol.77(4), 324–330 (1999).
  • Puehler F, Schwarz H, Waidner B et al. An interferon-γ-binding protein of novel structure encoded by the fowlpox virus. J. Biol. Chem.278(9), 6905–6911 (2003).
  • Pollitt EC. Fowlpox virus and interferon. PhD Thesis. Department of Microbiology. University of Leicester, UK (1997)
  • Franchini G, Gurunathan S, Baglyos L, Plotkin S, Tartaglia J. Poxvirus-based vaccine candidates for HIV: two decades of experience with special emphasis on canarypox vectors. Expert Rev. Vaccines3(Suppl. 4), S75–S88 (2004).
  • Luschow D, Hoffmann T, Hafez HM. Differentiation of avian poxvirus strains on the basis of nucleotide sequences of 4b gene fragment. Avian Dis.48(3), 453–462 (2004).
  • Sainova IV, Kril AI, Simeonov KB, Popova TP, Ivanov IG. Investigation of the morphology of cell clones, derived from the mammalian EBTr cell line and their susceptibility to vaccine avian poxvirus strains FK and Dessau. J. Virol. Meth.124(1–2), 37–40 (2005).

Websites

  • The US Federal Clinical Trials www.clinicaltrials.gov/ct/search?term = fowlpox&submit = Search (Accessed January, 2005)
  • The University of Oxford Malaria Vaccines Trials Group www.malaria-vaccines.org.uk/5.shtml (Accessed January, 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.