34
Views
27
CrossRef citations to date
0
Altmetric
Review

Molecular approaches for new vaccines against allergy

&
Pages 103-110 | Published online: 09 Jan 2014

References

  • Wüthrich B, Schindler C, Leuenberger P, Ackermann-Liebrich U. Prevalence of atopy and pollinosis in the adult population of Switzerland (SAPALDIA study). Swiss study on air pollution and lung diseases in Adults. Int. Arch. Allergy Immunol. 106, 149–56 (1995).
  • Valenta R, Kraft D. Recombinant allergen molecules: tools to study effector cell activation. Immunol. Rev. 179, 119–27 (2001).
  • Mari A, Riccioli D. The Allergome website – a database of allergenic molecules. Aim, structure, and data of a web-based resource. J. Allergy Clin. Immunol. 113, S301 (2004).
  • Recombinant allergens. In: Methods 32 Valenta R, Kraft D (Eds). 3, (2004).
  • Valenta R, Kraft D. From allergen structure to new forms of allergen-specific immunotherapy. Curr. Opin. Immunol. 14, 718–727 (2002).
  • Valenta R, Ball T, Focke M et al. Immunotherapy of allergic disease. Adv. Immunol. 82, 105–153 (2004).
  • Niederberger V, Niggemann B, Kraft D, Spitzauer S, Valenta R. Evolution of IgM, IgE and IgG1–4 antibody responses in early childhood monitored with recombinant allergen components: implications for class switch mechanisms. Eur. J. Immunol. 32, 576–584 (2002).
  • Asthma Prevention and Management Guidelines. Makino S, Ohta K, Nishima S, Morikawa A (Eds). Int. Arch. Allergy Immunol. 136(Suppl. 1) (2005).
  • Brown NJ, Robers LJ. Histamine, bradykinin, and their antagonists. In: The Pharmacological Basis of Therapeutics. Hardmann JG, Limbird LE (Eds), McGraw-Hill, 645–667 (2001).
  • Schimmer BP, Parker KL. Adrenocorticotropic hormone; adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and Aactions of adrenocortical hormones. In: The Pharmacological Basis of Therapeutics. Hardmann JG, Limbird LE (Eds), McGraw-Hill 1649–1677 (2001).
  • Varney VA, Gaga M, Frew AJ, Aber VR, Kay AB, Durham SR. Usefulness of immunotherapy in patients with severe summer hay fever uncontrolled by anti-allergic drugs. BMJ 302, 265–269 (1991).
  • Bousquet J, Lockey RF, Malling HJ. Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J. Allergy Clin. Immunol. 102, 558–562 (1998).
  • Moller S, Dreborg HA, Ferdousi S et al. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J. Allergy Clin. Immunol. 109, 251–256 (2002).
  • Lockey RF. ‘ARIA’: global guidelines and new forms of allergen immunotherapy. J. Allergy Clin. Immunol. 108, 497–499 (2001).
  • Canonica GW, Passalacqua G. Noninjection routes for immunotherapy. J. Allergy Clin. Immunol. 111, 437–448 (2003).
  • Reider N. Sublingual immunotherapy for allergic rhinoconjunctivitis - the seeming and the real. Int. Arch. Allergy Immunol. 137, 181–186 (2005).
  • Golden B, Kwiterovich KA, Kagey-Sobotka A, Valentine MD, Lichtenstein LM. Discontinuing venom immunotherapy: outcome after five years. J. Allergy Clin. Immunol. 97, 579–587 (1996).
  • Durham SR, Walker SM, Varga EM et al. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. 341, 468–475 (1999).
  • Noon L. Prophylactic inoculation of hay-fever. Lancet 1, 1572–1573 (1911).
  • Akdis CA, Blaser K. IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. FASEB J. 13, 603–609 (1999).
  • Flicker S, Valenta R. Renaissance of the blocking antibody concept in Type I allergy. Int. Arch. Allergy Immunol. 132, 13–24 (2003).
  • Gastaminza G, Algorta J, Audicana M et al. Systemic reactions to immunotherapy: influence of composition and manufacturer. Clin. Exp. Allergy 33, 470–4 (2003).
  • Grier TJ, Hazlhurst DM, Duncan EA, West TK, Esch RE. Major allergen measurements: sources of variability, validation, quality assurance, and utility for laboratories, manufacturers, and clinics. Allergy Asthma Proc. 23, 125–131 (2002).
  • van der Veen MJ, Mulder M, Witteman AM et al. False-positive skin prick test responses to commercially available dog dander extracts caused by contamination with house dust mite. J. Allergy Clin. Immunol. 98, 1028–1034 (1996).
  • Trivedi B, Valerio C, Slater JE. Endotoxin content of standardized allergen vaccines. J. Allergy Clin. Immunol. 111, 777–783 (2003).
  • Mothes N, Heinzkill M, Drachenberg KJ et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted IgE production and inhibition of basophil histamine release by blocking antibodies. Clin. Exp. Allergy 33, 1198–1208 (2003).
  • van Hage-Hamsten M, Valenta R. Specific immunotherapy - the induction of new IgE specificities? Allergy 57, 375–378 (2002).
  • Movérare R, Elfman L, Vesterinen E, Metso T, Haahtela T. Development of new IgE specifities to allergenic components in birch pollen extract during specific immunotherapy studied with immunoblotting and Pharmacia CAP system. Allergy 57, 423–430 (2002).
  • Bernstein DI, Wanner M, Borish L, Liss GM; Immunotherapy Committee of the American Academy of Allergy, Asthma and Immunology. Twelve-year survey of fatal reactions to allergen injections and skin testing: 1990–2001. J. Allergy Clin. Immunol. 113, 1129–1136 (2004).
  • Marsh DG. Preparation and properties of allergoids, derived from native pollen allergens by mild formalin treatment. Int. Arch. Allergy Appl. Immunol. 41, 199–215 (1971).
  • Klimek L, Dormann D, Jarmann ER et al. Short-term preseasonal birch pollen allergoid immunotherapy influences symptoms, specific nasal provocation and cytokine levels in nasal secretions, but not peripheral T-cell responses, in patients with allergic rhinitis. Clin. Exp. Allergy 29, 1326–1335 (1999).
  • King TP, Spangfort MD. Structure and biology of stinging insect venom allergens. Int. Arch. Allergy Immunol. 123, 99–106 (2000).
  • Breiteneder H, Ebner C. Molecular and biochemical classification of plant-derived food allergens. Int. Arch. Allergy Immunol. 106, 27–36 (2000).
  • Rodriguez R, Villalba M, Monsalve RI, Batanero E. The spectrum of olive pollen allergens. Int. Arch. Allergy Immunol. 125, 185–195 (2001).
  • Thomas WR, Smith WA, Hales BJ, Mills KL, O´Brien RM. Characterization and immunobiology of house dust mite allergens. Int. Arch. Allergy Immunol. 129, 1–18 (2002).
  • Kurup VP, Shen HD, Vijay H. Immunobiology of fungal allergens. Int. Arch. Allergy Immunol. 129, 181–188 (2002).
  • Andersson K, Lidholm J. Characteristics and immunobiology of grass pollen allergens. Int. Arch. Allergy Immunol. 130, 87–107 (2003).
  • Roux KH, Teuber SS, Sathe SK. Tree nut allergens. Int. Arch Allergy. Immunol. 131, 234–244 (2003).
  • Colombo P, Bonura A, Costa M et al. The allergens of Parietaria. Int. Arch. Allergy Immunol. 130, 173–179 (2003).
  • Valenta R, Vrtala S, Focke-Tejkl M et al. Genetically engineered and synthetic allergen derivatives: candidates for vaccination against Type I allergy. Biol. Chem. 380, 815–824 (1999).
  • Hiller R, Laffer S, Harwanegg C et al. Microarrayed allergen-molecules: diagnostic gatekeepers for allergy treatment. FASEB J. 16, 414–416 (2002).
  • Kazemi-Shirazi L, Niederberger V, Linhart B et al. Recombinant marker allergens: diagnostic gatekeepers for the treatment of allergy. Int. Arch. Allergy Immunol. 127, 259–268 (2002).
  • Pittner G, Vrtala S, Thomas WR et al. Component-resolved diagnosis of house-dust mite allergy with purified natural and recombinant mite allergens. Clin. Exp. Allergy 34, 597–603 (2004).
  • Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Grönlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin. Exp. Allergy 29, 896–904 (1999).
  • Vrtala S, Ball T, Spitzauer S et al. Immunization with purified natural and recombinant allergens induces mouse IgG1 antibodies that recognize similar epitopes as human IgE and inhibit the human IgE-allergen interaction and allergen-induces basophil degranulation. J. Immunol. 160, 6137–6144 (1998).
  • Swoboda I, Bugajska-Schretter A, Verdino P et al. Recombinant carp parvalbumin, the major cross-reactive fish allergen: tool for diagnosis and therapy of fish allergy. J. Immunol. 168, 4576–4584 (2002).
  • Orlandi A, Grasso F, Corinti S et al. The recombinant major allergen of Paritaria judaica and its hypoallergenic variant: in vivo evaluation in a murine model of allergic sensitization. Clin. Exp. Allergy 34, 470–477 (2004).
  • Holt PG, Patty JE, Turner KG. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology 42, 409–417 (1981).
  • Tsitoura DC, DeKruyff RH, Lamb JR, Umetsu DT. Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. J. Immunol. 163, 2592–2600 (1999).
  • Wiedermann U, Jahn-Schmid B, Bohle B et al. Suppression of antigen-specific T- and B-cell responses by intranasal or oral administration of recombinant Bet v 1, the major birch pollen allergen, in a murine model of Type I allergy. J. Allergy Clin. Immunol. 103, 1202–1210 (1999).
  • Hufnagl K, Wagner B, Winkler B et al. induction of mucosal tolerance with recombinant Hev b 1 and recombinant Hev b 3 for prevention of latex allergy in BALB/c mice. Clin. Exp. Immunol. 133, 170–176 (2003).
  • Winkler B, Bolwig C, Seppala U et al. Allergen-specific immunosuppression by mucosal treatment with recombinant Ves v 5, a major allergen of Vespula vulgaris venom, in a murine model of wasp venom allergy. Immunology 110, 376–385 (2003).
  • Jutel M, Jaeger L, Suck R et al. Allergen-specific immunotherapy with recombinant grass pollen allergens. J. Allergy Clin. Immunol. 116, 608–613 (2005).
  • Valenta R. The future of antigen-specific immunotherapy of allergy. Nature Rev. Immunol. 2, 446–453 (2002).
  • Hoyne GF, O´Hehir RE, Wraith DC, Thomas WR, Lamb JR. Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J. Exp. Med. 178, 1783–1788 (1993).
  • Briner TJ, Kuo MC, Keating KM, Rogers BL, Greenstein JL. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc. Natl Acad. Sci. USA 90, 7608–7612 (1993).
  • Simons FE, Imada M, Li Y, Watson WT, HayGlass KT. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int. Immunol. 8, 1937–1945 (1996).
  • Müller U, Akdis CA, Fricker M et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J. Allergy Clin. Immunol. 101, 747–754 (1998).
  • Haselden BM, Kay AB, Larché M. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J. Exp. Med. 189, 1885–1894 (1999).
  • Alexander C, Ying S, Kay AB, Larche M. Fel d 1-derived T cell peptide therapy induces recruitment of CD4+ CD25+; CD4+ interferon-γ+ T helper Type 1 cells to sites of allergen-induced late-phase skin reactions in cat-allergic subjects. Clin. Exp. Allergy 35, 52–58 (2005).
  • Smith TR, Alexander C, Kay AB, Larche M, Robinson DS. Cat allergen peptide immunotherapy reduces CD4(+) T cell responses to cat allergen but does not alter suppression by CD4(+) CD25(+) T cells: a double-blind placebo-controlled study. Allergy 59, 1079–1101 (2004).
  • Fellrath JM, Kettner A, Dufour N et al. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a Phase I trial. J. Allergy Clin. Immunol. 111, 854–861 (2003).
  • Oldfield WLG, Larché M, Kay AB. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: a randomised control trial. Lancet 360, 47–53 (2002).
  • Jensen-Jarolim E, Leitner A, Kalchhauser H et al. Peptide mimotopes displayed by phage inhibit antibody binding to Bet v 1, the major birch pollen allergen, and induce specific IgG response in mice. FASEB J. 12, 1635–1642 (1998).
  • Focke M, Linhart B, Hartl A et al. Non-anaphylactic surface-exposed peptides of the major birch pollen allergen, Bet v 1, for preventive vaccination. Clin. Exp. Allergy 34, 1525–33 (2004).
  • Zeiler T, Taivainen A, Rytkonen M et al. Recombinant allergen fragments as candidate preparations for allergen immunotherapy. J. Allergy Clin. Immunol. 100, 721–727 (1997).
  • Vrtala S, Hirtenlehner K, Vangelista L et al. Conversion of the major birch pollen allergen, Bet v 1, into two nonanaphylactic T cell epitope-containing fragments: candidates for a novel form of specific immunotherapy. J. Clin. Invest. 99, 1673–1681 (1997).
  • Vrtala S, Hirtenlehner K, Susani M et al. Genetic engineering of a hypoallergenic trimer of the major birch pollen allergen, Bet v 1. FASEB J. 15, 2045–2047 (2001).
  • Niederberger V, Horak F, Vrtala S et al. Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc. Natl. Acad. Sci. USA 101, 14677–14682 (2004).
  • Ipsen H, Loewenstein H. Isolation and immunochemical characterization of the major allergen of birch pollen (Betula verrucosa). J. Allergy Clin. Immunol. 72, 150–159 (1983).
  • Breiteneder H, Pettenburger K, Bito A et al. The gene coding for the major birch pollen allergen, Bet v 1, is highly homologous to a pea disease resistance response gene. EMBO J. 8, 1935–1938 (1989).
  • Jarolim E, Rumpold H, Endler AT et al. IgE and IgG antibodies of patients with allergy to birch pollen as tools to define the allergen profile of Betula verrucosa. Allergy 44, 385–395 (1989).
  • Niederberger V, Pauli G, Grönlund H et al. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: a quantitative IgE inhibition study with sera from different populations. J. Allergy Clin. Immunol. 102, 579–591 (1998).
  • van Hage-Hamsten M, Kronqvist M, Zetterstrom O et al. Skin test evaluation of genetically engineered hypoallergenic derivates of the major birch pollen allergen, Bet v 1. Results obtained with a mix of two recombinant Bet v 1 fragments and recombinant Bet v 1 trimer in a Swedish population before the birch pollen season. J. Allergy Clin. Immunol. 104, 969–977 (1999).
  • Pauli G, Purohit A, Oster J-P et al. Comparison of genetically engineered hypoallergenic rBet v 1 derivatives with Bet v 1 wild type by skin prick and intradermal testing: results obtained in a French population. Clin. Exp. Allergy 30, 1076–1084 (2000).
  • van Hage-Hamsten M, Johansson E, Roquet A et al. Nasal challenges with recombinant derivatives of the major birch pollen allergen Bet v 1 induce fewer symptoms and lower mediator release than rBet v 1 wild type in patients with allergic rhinitis. Clin. Exp. Allergy. 32, 1448–1453 (2002).
  • Reisinger J, Horak F, Pauli G et al. Allergen-specific IgG antibodies in nasal secretions induced by vaccination with genetically modified allergens are associated with reduced nasal allergen sensitivity. J. Allergy Clin. Immunol. 116, 347–354 (2005).
  • Gafvelin G, Thunberg S, Kronqvist M et al. Cytokine and antibody responses in birch pollen allergic patients treated with genetically modified derivatives of the major birch pollen allergen Bet v 1. Int. Arch. Allergy Immunol. 138(1), 59–66 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.