42
Views
6
CrossRef citations to date
0
Altmetric
Review

Sheep-associated malignant catarrhal fever virus: prospects for vaccine development

, &
Pages 133-141 | Published online: 09 Jan 2014

References

  • Plowright W. Malignant catarrhal fever virus. In: Virus Infections of Ruminants. 3rd Ed. Dinter Z, Morein B (Eds). Elsevier Science Publishers BV, NY, USA, 123–150 (1990).
  • Crawford T, O’Toole DT, Li H. Malignant Catarrhal Fever. In: Current Veterinary Therapy 4: Food Animal Practice. 4th Ed. Howell J, Smith RA (Eds). W.B. Saunders Company, OK, USA 306–309 (1999).
  • •More recent update review of , in particular, sheep-associated MCF.
  • Reid HW. Malignant catarrhal fever. In: Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals. 5th Ed. Office International Des Epizooties, Paris, France, 570–579 (2004).
  • Li H, Dyer N, Keller J et al. Newly recognized herpesvirus causing malignant catarrhal fever in white-tailed deer (Odocoileus virginianus). J. Clin. Microbiol. 38, 1313–1318 (2000).
  • Crawford TB, Li H, Rosenberg SR et al. Mural folliculitis and alopecia caused by infection with goat-associated malignant catarrhal fever virus in two sika deer. J. Am. Vet. Med. Assoc. 221, 843–847 (2001).
  • Li H, Wunschmann A, Keller J et al. Caprine herpesvirus-2 associated malignant catarrhal fever in white-tailed deer (Odocoileus virginianus). J. Vet. Diagn. Invest. 15, 46–49 (2002).
  • Plowright W, Ferris RD, Scott GR. Blue Wildebeest and the aetiological agent of bovine malignant catarrhal fever virus. Nature 188, 1167–1169 (1960).
  • Reid HW, Buxton D. Malignant catarrhal fever and the γ-herpesvirinae of Bovidae. In: Herpesvirus Diseases of Cattle, Horses, and Pigs. Wittmann G (Ed.) Kluwer Academic Publishers, Boston, MA, USA 116–162 (1989).
  • Li H, Shen DT, O’Toole DT et al. Investigation of sheep-associated malignant catarrhal fever virus infection in ruminants by PCR and competitive inhibition enzyme-linked immunosorbent assay. J. Clin. Microbiol. 33, 2048–2053 (1995).
  • Plowright W. Malignant catarrhal fever in East Africa. Res. Vet. Sci. 6, 57–83 (1965).
  • Cleaveland S, Kusiluka L, Kuwai JO et al. Assessing the impact of malignant catarrhal fever in Ngorongoro district, Tanzania. In: www.eldis.org/fulltext/cape_new/MCF_Maasai_Tanzania.pdf 1–68 (2004).
  • Mackintosh C. Importance of infectious diseases of New Zealand farmed deer. Surveillance Wellington 20, 24–26 (1993).
  • Mackintosh CG. Diseases of farmed deer in New Zealand. Veterinary Annual 30, (1990).
  • Daniels PW, Sudarisman, Wyono A et al. Epidemiological aspects of malignant catarrhal fever in Indonesia. In: Malignant Catarrhal Fever in Asian Livestock. Daniels PW, Sudarisman, Ronohardjo P (Eds). Australian Centre for International Agricultural Research, Canberra, Australia 21–31 (1988).
  • Wiyono A, Damayanti R. Studies on the transmission of malignant catarrhal fever in experimental animals: Bali cattle in close contact with sheep. Jurnal. Ilmu. Ternak. dan. Veteriner. 4, 128–135 (1999).
  • Schultheiss PC, Collins JK, Spraker TR et al. Epizootic malignant catarrhal fever in three bison herds: differences from cattle and association with ovine herpesvirus-2. J. Vet. Diagn. Invest. 12, 497–502 (2000).
  • Berezowski JA, Appleyard GD, Crawford TB et al. An outbreak of sheep-associated malignant catarrhal fever in bison (Bison bison) after exposure to sheep at a public auction sale. J. Vet. Diagn. Invest. 17, 55–58 (2005).
  • •Lack of MCF transmission between bison.
  • O’Toole D, Li H, Sourk C et al. Malignant catarrhal fever in a bison feedlot, 1994–2000. J. Vet. Diagn. Invest. 14, 183–193 (2002).
  • •Relatively comprehensive studies on sheep-associated MCF in bison.
  • Li H, Taus NS, Jones c et al. A devastating outbreak of malignant catarrhal fever in a bison feedlot. J. Vet. Diagn. Invest. 18, 118–122 (2006).
  • Liggitt HD, DeMartini JC, McChesney AE et al. Experimental transmission of malignant catarrhal fever in cattle: gross and histopathologic changes. Am. J. Vet. Res. 39, 1249–1257 (1978).
  • Liggitt HD, DeMartini JC. The pathomorphology of malignant catarrhal fever. I. Generalized lymphoid vasculitis. Vet. Pathol. 17, 58–72 (1980).
  • Liggitt HD, DeMartini JC. The pathomorphology of malignant catarrhal fever. II. Multisystemic epithelial lesions. Vet. Pathol. 17, 73–83 (1980).
  • Li H, Shen DT, Knowles DP et al. Competitive inhibition enzyme-linked immunosorbent assay for antibody in sheep and other ruminants to a conserved epitope of malignant catarrhal fever virus. J. Clin. Microbiol. 32, 1674–1679 (1994).
  • Li H, McGuire TC, Muller-Doblies UU et al. A simpler, more sensitive competitive inhibition ELISA for detection of antibody to malignant catarrhal fever viruses. J. Vet. Diagn. Invest. 13, 361–364 (2001).
  • •Development of serologic assay for MCF viral antibody.
  • Baxter SIF, Pow I, Bridgen A et al. PCR detection of the sheep-associated agent of malignant catarrhal fever. Arch. Virol. 132, 145–159 (1993).
  • •Initial development of OvHV-2-specific polymerase chain reaction (PCR).
  • Hua Y, Li H, Crawford TB. Quantitation of sheep-associated malignant catarrhal fever viral DNA by competitive polymerase chain reaction. J. Vet. Diagn. Invest. 11, 117–121 (1999).
  • Li H, Snowder G, O’Toole DT et al. Transmission of ovine herpesvirus 2 in lambs. J. Clin. Microbiol. 36, 223–226 (1998).
  • Li H, Snowder G, O’Toole DT et al. Transmission of ovine herpesvirus 2 among adult sheep. Vet Microbiol. 71, 27–35 (2000).
  • Li H, Hua Y, Snowder G et al. Levels of ovine herpesvirus 2 DNA in nasal secretions and blood of sheep: implications for transmission. Vet. Microbiol. 79, 301–310 (2001).
  • Li H, Snowder G, Crawford TB. Effect of passive transfer of maternal immune components on infection with ovine herpesvirus 2 in lambs. Am. J. Vet. Res. 63, 631–633 (2002).
  • Hussy D, Stauber N, Leutenegger CM et al. Quantitative Fluorogenic PCR Assay for Measuring Ovine Herpesvirus 2 Replication in Sheep. Clin. Diagn. Lab Immunol. 8, 123–128 (2001).
  • •Development of real-time PCR specific for OvHV-2.
  • Li H, Taus NS, Lewis GS et al. Shedding of ovine herpesvirus 2 in sheep nasal secretions: the predominant mode for transmission. J. Clin. Microbiol. 42, 5558–5564 (2004).
  • ••Definition of OvHV-2 shedding in sheep.
  • Taus NS, Traul DL, Oaks JL et al. Experimental infection of sheep with ovine herpesvirus 2 via aerosolization of nasal secretions. J. Gen. Virol. 86, 575–579 (2005).
  • •Establishment of a sheep model for OvHV-2 infection.
  • Reid HW, Buxton D, Pow I et al. Isolation and characterisation of lymphoblastoid cells from cattle and deer affected with ‘sheep-associated’ malignant catarrhal fever. Res. Vet. Sci. 47, 90–96 (1989).
  • Rosbottom J, Dalziel RG, Reid HW et al. Ovine herpesvirus 2 lytic cycle replication and capsid production. J. Gen. Virol. 83, 2999–3002 (2002).
  • Hussy D, Janett F, Albini S et al. Analysis of the pathogenetic basis for shedding and transmission of ovine γ-herpesvirus 2. J. Clin. Microbiol. 40, 4700–4704 (2002).
  • Pierson RE, Hamdy FM, Dardiri AH et al. Comparison of African and American forms of malignant catarrhal fever: transmission and clinical signs. Am. J. Vet. Res. 40, 1091–1095 (1979).
  • Liggitt HD, McChesney AE, DeMartini JC. Experimental transmission of bovine malignant catarrhal fever to a bison (Bison bison). J. Wildl. Dis. 16, 299–304 (1980).
  • Hoffmann D, Sobironingsih S, Clarke BC et al. Transmission and virological studies of a malignant catarrhal fever syndrome in the Indonesian swamp buffalo (Bubalus bubalis). Aust. Vet. J. 61, 113–116 (1984).
  • Reid HW, Buxton D, Pow I et al. Malignant catarrhal fever: experimental transmission of the ‘sheep-associated’ form of the disease from cattle and deer to cattle, deer, rabbits and hamsters. Res. Vet. Sci. 41, 76–81 (1986).
  • Li H, Snowder G, Crawford TB. Production of malignant catarrhal fever virus-free sheep. Vet. Microbiol. 65, 167–172 (1999).
  • Götze R, Liess J. Erfolgreiche Übertragungsversuche des bösartigen Katarrhalfieber von Rind zu Rind. Identität mit dem Sudafrikanischen Snotsiekte. Dtsch. Tierärztl. Wochenschr. 37, 433–437 (1929).
  • Reid HW. The biology of a fatal herpesvirus infection of deer (malignant catarrhal fever). In:The Biology of Deer. Brown RD (Ed.) Springer-Verlag, New York, NY, USA 93–100 (1992).
  • Ellis JA, O’Toole DT, Haven TR et al. Predominance of BoCD8-positive T-lymphocytes in vascular lesions in a 1-year-old cow with concurrent malignant catarrhal fever and bovine viral diarrhea virus infection. Vet. Pathol. 29, 545–547 (1992).
  • Lagourette P, Delverdier M, Bourges AN et al. Immunohistochemical study of lymphoid cell reactions in four cattle affected with malignant catarrhal fever. Eur. J. Vet. Pathol. 3, 73–78 (1997).
  • Nakajima Y, Momotani E, Ishikawa Y et al. Phenotyping of lymphocyte subsets in the vascular and epithelial lesions of a cow with malignant catarrhal fever. Vet. Immunol. Immunopathol. 33, 279–284 (1992).
  • Nakajima Y, Ishikawa Y, Kadota K et al. Surface marker analysis of the vascular and epithelia lesions in cattle with sheep-associated malignant catarrhal fever. J. Vet. Med. Sci. 56, 1065–1068 (1994).
  • Simon S, Li H, O’Toole D et al. The vascular lesions of a cow and bison with sheep-associated malignant catarrhal fever contain ovine herpesvirus 2-infected CD8(+) T-lymphocytes. J. Gen. Virol. 84, 2009–2013 (2003).
  • Burrells C, Reid HW. Phenotypic analysis of lymphoblastoid cell lines derived from cattle and deer affected with ‘sheep-associated’ malignant catarrhal fever. Vet. Immunol. Immunopathol. 29, 151–161 (1991).
  • Swa S, Wright H, Thomson J et al. Constitutive activation of Lck and Fyn tyrosine kinases in large granular lymphocytes infected with the gamma-herpesvirus agents of malignant catarrhal fever. Immunology 102, 44–52 (2001).
  • Schock A, Collins RA, Reid HW. Phenotype, growth regulation and cytokine transcription in ovine herpesvirus-2 (OHV-2)-infected bovine T-cell lines. Vet. Immunol. Immunopathol. 66, 67–81 (1998).
  • Bridgen A, Munro R, Reid HW. The detection of Alcelaphine herpesvirus-1 DNA by in situ hybridization of tissues from rabbits affected with malignant catarrhal fever. J. Comp. Pathol. 106, 351–359 (1992).
  • Rossiter PB. A lack of readily demonstrable virus antigens in the tissues of rabbits and cattle infected with malignant catarrhal fever virus. Br. Vet. J. 136, 478–483 (1980).
  • Edington N, Patel J, Russell PH et al. The nature of the acute lymphoid proliferation in rabbits infected with the herpes virus of bovine malignant catarrhal fever. Eur. J. Cancer 15, 1515–1522 (1979).
  • Rossiter PB. Immunology and immunopathology of malignant catarrhal fever. Prog. Vet. Microbiol. Immunol. 1, 121–144 (1985).
  • Schock A, Reid HW. Characterisation of the lymphoproliferation in rabbits experimentally affected with malignant catarrhal fever. Vet. Microbiol. 53, 111–119 (1996).
  • Buxton D, Reid HW, Finlayson J et al. Pathogenesis of ‘sheep-associated’ malignant catarrhal fever in rabbits. Res. Vet. Sci. 36, 205–211 (1984).
  • Buxton D, Reid HW. Transmission of malignant catarrhal fever to rabbits. Vet. Rec. 106, 243–245 (1980).
  • Bennett NJ, May JS, Stevenson PG. γ-herpesvirus latency requires T-cell evasion during episome maintenance. PLoS. Biol. 3, e120 (2005).
  • Moore PS, Chang Y. Kaposi’s sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Ann. Rev. Microbiol. 57, 609–639 (2003).
  • Stevenson PG. Immune evasion by g-herpesviruses. Curr. Opin. Immunol. 16, 456–462 (2004).
  • Arico E, Robertson KA, Belardelli F et al. Vaccination with inactivated murine gammaherpesvirus 68 strongly limits viral replication and latency and protects Type I IFN receptor knockout mice from a lethal infection. Vaccine 22, 1433–1440 (2004).
  • Boname JM, Coleman HM, May JS et al. Protection against wild type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J. Gen. Virol. 85, 131–135 (2004).
  • Fowler P, Efstathiou S. Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J. Gen. Virol. 85, 609–613 (2004).
  • Rickabaugh TM, Brown HJ, Martinez-Guzman D et al. Generation of a latency-deficient γ-herpesvirus that is protective against secondary infection. J. Virol. 78, 9215–9223 (2004).
  • Stewart JP, Micali N, Usherwood EJ et al. Murine γ-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for γ-herpesvirus vaccination. Vaccine 17, 152–157 (1999).
  • Tibbetts SA, McClellan JS, Gangappa S et al. Effective vaccination against long-term γ-herpesvirus latency. J. Virol. 77, 2522–2529 (2003).
  • Edington N, Plowright W. The protection of rabbits against the herpesvirus of malignant catarrhal fever by inactivated vaccines. Res. Vet. Sci. 28, 384–386 (1980).
  • Plowright W, Herniman KAJ, Jessett DM et al. Immunisation of cattle against the herpesvirus of malignant catarrhal fever: failure of inactivated culture vaccines with adjuvant. Res. Vet. Sci. 19, 159–166 (1975).
  • Rossiter PB. Attempts to protect rabbits against challenge with virulent, cell-associated, malignant catarrhal fever virus. Vet. Microbiol. 7, 419–425 (1982).
  • Russell PH. Malignant catarrhal fever virus in rabbits. Reproduction of clinical disease by cell-free virus and partial protection against such disease by vaccination with inactivated virus. Vet. Microbiol. 5, 161–163 (1980).
  • Callan MF. The immune response to Epstein-Barr virus. Microbes. Infect. 6, 937–945 (2004).
  • Kim IJ, Flano E, Woodland DL et al. Antibody-mediated control of persistent gamma-herpesvirus infection. J. Immunol. 168, 3958–3964 (2002).
  • Sparks-Thissen RL, Braaten DC, Hildner K et al. CD4 T-cell control of acute and latent murine γ-herpesvirus infection requires IFN-γ. Virology 338, 201–208 (2005).
  • Spear PG, Longnecker R. Herpesvirus entry: an update. J. Virol. 77, 10179–10185 (2003).
  • Patel JR, Heldens J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)-epidemiology, disease and immunoprophylaxis: a brief review. Vet. J. 170, 14–23 (2005).
  • Baaten BJ, Butter C, Davison TF. Study of host-pathogen interactions to identify sustainable vaccine strategies to Marek’s disease. Vet. Immunol. Immunopathol. 100, 165–177 (2004).
  • Patel JR. Relative efficacy of inactivated bovine herpesvirus-1 (BHV-1) vaccines. Vaccine 23, 4054–4061 (2005).
  • Patel JR. Characteristics of live bovine herpesvirus-1 vaccines. Vet. J. 169, 404–416 (2005).
  • van Rooij EM, de Bruin MG, de Visser YE et al. Vaccine-induced T-cell-mediated immunity plays a critical role in early protection against pseudorabies virus (suid herpes virus Type 1) infection in pigs. Vet. Immunol. Immunopathol. 99, 113–125 (2004).
  • Babiuk LA, Pontarollo R, Babiuk S et al. Induction of immune responses by DNA vaccines in large animals. Vaccine 21, 649–658 (2003).
  • Van Drunen Littel-VanDen Hurk, Loehr BI, Babiuk LA. Immunization of livestock with DNA vaccines: current studies and future prospects. Vaccine 19, 2474–2479 (2001).
  • Toussaint JF, Letellier C, Paquet D et al. Prime–boost strategies combining DNA and inactivated vaccines confer high immunity and protection in cattle against bovine herpesvirus-1. Vaccine (2005).
  • Derrick SC, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine 23, 780–788 (2004).
  • Solis CF, Ostoa-Saloma P, Lugo-Martinez VH et al. Genetic vaccination against murine cysticercosis by using a plasmid vector carrying Taenia solium paramyosin. Infect. Immun. 73, 1895–1897 (2005).
  • Liang R, van den Hurk JV, Zheng C et al. Immunization with plasmid DNA encoding a truncated, secreted form of the bovine viral diarrhea virus E2 protein elicits strong humoral and cellular immune responses. Vaccine 23, 5252–5262 (2005).
  • Mwangi W, Brown WC, Splitter GA et al. Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T-cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection. J. Leukoc. Biol. 78, 401–411 (2005).
  • van Drunen Littel-VanDen Hurk, Babiuk SL, Babiuk LA. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol. Rev. 199, 113–125 (2004).
  • Tischer BK, Schumacher D, Beer M et al. A DNA vaccine containing an infectious Marek’s disease virus genome can confer protection against tumorigenic Marek’s disease in chickens. J. Gen. Virol. 83, 2367–2376 (2002).
  • Cheevers WP, Snekvik KR, Trujillo JD et al. Prime-boost vaccination with plasmid DNA encoding caprine-arthritis encephalitis lentivirus env and viral SU suppresses challenge virus and development of arthritis. Virology 306, 116–125 (2003).
  • Adler H, Messerle M, Koszinowski UH. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev. Med. Virol. 13, 111–121 (2003).
  • ••Review of generating infectious herpesviral bacterial artificial chromosome clones.
  • Delecluse HJ, Hilsendegen T, Pich D et al. Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc. Natl. Acad. Sci. USA 95, 8245–8250 (1998).
  • Li H, O’Toole D, Kim O et al. Malignant catarrhal fever-like disease in sheep after intranasal inoculation with ovine herpesvirus-2. J. Vet. Diagn. Invest.17, 171–175 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.