58
Views
12
CrossRef citations to date
0
Altmetric
Review

Advances in vaccine development against the pre-erythrocytic stage of Plasmodium falciparum malaria

Pages 81-93 | Published online: 09 Jan 2014

References

  • WHO. World Health Organisation Expert Committee on Malaria 20th Report. WHO, Geneva, Switzerland (2002).
  • Marshall E. Malaria. A renewed assault on an old and deadly foe. Science 290(5491), 428–430 (2000).
  • Greenwood B, Mutabingwa T. Malaria in 2002. Nature 415(6872), 670–672 (2002).
  • Chen Q, Fernandez V, Sundstrom A et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature 394(6691), 392–395 (1998).
  • Plebanski M, Flanagan KL, Lee EA et al. interleukin-10-mediated immunosuppression by a variant CD4 T-cell epitope of Plasmodium falciparum. Immunity 10(6), 651–660 (1999).
  • Urban BC, Ferguson DJ, Pain A et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400(6739), 73–77 (1999).
  • Rosenberg R, Wirtz RA, Schneider I, Burge R. An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Trans. R. Soc. Trop. Med. Hyg. 84(2), 209–212 (1990).
  • Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer MG, Meuwissen JH. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans. R. Soc. Trop. Med. Hyg. 85(2), 175–180 (1991).
  • Mota MM, Pradel G, Vanderberg JP et al. Migration of Plasmodium sporozoites through cells before infection. Science 291(5501), 141–144 (2001).
  • Mota MM, Hafalla JC, Rodriguez A. Migration through host cells activates Plasmodium sporozoites for infection. Nature Med. 8(11), 1318–22 (2002).
  • Garnham PC. Comments on biology of human malaria. Mil. Med. 131(9 Suppl.), 961–962 (1966).
  • Prieur E, Gilbert SC, Schneider J et al. A Plasmodium falciparum candidate vaccine based on a six-antigen polyprotein encoded by recombinant poxviruses. Proc. Natl Acad. Sci. USA 101(1), 290–295 (2004).
  • Ballou WR. Malaria vaccines in development. Expert Opin. Emerg. Drugs. 10(3), 489–503 (2005).
  • Ballou WR, Arevalo-Herrera M, Carucci D et al. Update on the clinical development of candidate malaria vaccines. Am. J. Trop. Med. Hyg. 71(2 Suppl), 239–247 (2004).
  • Tongren JE, Zavala F, Roos DS, Riley EM. Malaria vaccines: if at first you don’t succeed. Trends Parasitol. 20(12), 604–610 (2004).
  • Moorthy VS, Good MF, Hill AV. Malaria vaccine developments. Lancet. 363(9403), 150–156 (2004).
  • Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216(111), 160–162 (1967).
  • Clyde DF. Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am. J. Trop. Med. Hyg. 24(3), 397–401 (1975).
  • Doolan DL, Hoffman SL. The complexity of protective immunity against liver-stage malaria. J. Immunol. 165(3), 1453–1462 (2000).
  • Schofield L, Villaquiran J, Ferreira A et al. g interferon, CD8+ T-cells and antibodies required for immunity to malaria sporozoites. Nature 330(6149), 664–666 (1987).
  • Weiss WR, Sedegah M, Beaudoin RL, Miller LH, Good MF. CD8+ T-cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl Acad. Sci. USA 85(2), 573–576 (1988).
  • Rodrigues MM, Cordey AS, Arreaza G et al. CD8+ cytolytic T-cell clones derived against the Plasmodium yoelii circumsporozoite protein protect against malaria. Int. Immunol. 3(6), 579–585 (1991).
  • Romero P, Maryanski JL, Corradin G et al. Cloned cytotoxic T-cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341(6240), 323–326 (1989).
  • Hoffman SL, Oster CN, Mason C et al. Human lymphocyte proliferative response to a sporozoite T-cell epitope correlates with resistance to falciparum malaria. J. Immunol. 142(4), 1299–1303 (1989).
  • Hill AV, Elvin J, Willis AC et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360(6403), 434–439 (1992).
  • Hill AV, Allsopp CE, Kwiatkowski D et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352(6336), 595–600 (1991).
  • Fairley NH. Malaria; with special reference to certain experimental, clinical, and chemotherapeutic investigations; chemotherapy. Br Med. J. 2(4633), 891–897 (1949).
  • Simpson JA, Aarons L, Collins WE, Jeffery GM, White NJ. Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection. Parasitology 124(Pt. 3), 247–263 (2002).
  • Davis JR, Murphy JR, Baqar S et al. Estimate of antiPlasmodium falciparum sporozoite activity in humans vaccinated with synthetic circumsporozoite protein (NANP)3. Trans. R. Soc. Trop. Med. Hyg. 83(6), 748–750 (1989).
  • Greenwood B, Marsh K, Snow R. Why do some African children develop severe malaria? Parasitol. Today. 7(10), 277–281 (1991).
  • Nevill CG, Some ES, Mung’ala VO et al. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop. Med. Int. Health. 1(2), 139–146 (1996).
  • Chulay JD, Schneider I, Cosgriff TM et al. Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am. J. Trop. Med. Hyg. 35(1), 66–68 (1986).
  • Hoffman SL, Goh LM, Luke TC et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185(8), 1155–1164 (2002).
  • Matuschewski K, Ross J, Brown SM et al. Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J. Biol. Chem. 277(44), 41948–41953 (2002).
  • Kaiser K, Matuschewski K, Camargo N, Ross J, Kappe SH. Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol. Microbiol. 51(5), 1221–1232 (2004).
  • Mueller AK, Camargo N, Kaiser K et al. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite–host interface. Proc. Natl Acad. Sci. USA 102(8), 3022–3027 (2005).
  • Mueller AK, Labaied M, Kappe SH, Matuschewski K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433(7022), 164–167 (2005).
  • van Dijk MR, Douradinha B, Franke-Fayard B et al. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc. Natl Acad. Sci. USA 102(34), 12194–1219 (2005).
  • Reece WH, Pinder M, Gothard PK et al. A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nature Med. 10(4), 406–410 (2004).
  • Riley EM, Allen SJ, Bennett S et al. Recognition of dominant T-cell-stimulating epitopes from the circumsporozoite protein of Plasmodium falciparum and relationship to malaria morbidity in Gambian children. Trans. R. Soc. Trop. Med. Hyg. 84(5), 648–657 (1990).
  • Nussenzweig V, Nussenzweig RS. Circumsporozoite proteins of malaria parasites. Cell 42(2), 401–403 (1985).
  • Zavala F, Cochrane AH, Nardin EH, Nussenzweig RS, Nussenzweig V. Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes. J. Exp. Med. 157(6), 1947–1957 (1983).
  • Molano A, Park SH, Chiu YH et al. Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T-cell activation and antimalarial responses. J. Immunol. 164(10), 5005–5009 (2000).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet. 366(9502), 2012–2018 (2005).
  • Stoute JA, Slaoui M, Heppner DG et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N. Engl. J. Med. 336(2), 86–91 (1997).
  • Kester KE, McKinney DA, Tornieporth N et al. Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria. J. Infect. Dis. 183(4), 640–647 (2001).
  • Lalvani A, Moris P, Voss G et al. Potent induction of focused Th1-type cellular and humoral immune responses by RTS,S/SBAS2, a recombinant Plasmodium falciparum malaria vaccine. J. Infect. Dis. 180(5), 1656–1664 (1999).
  • Sun P, Schwenk R, White K et al. Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4+ and CD8+ T-cells producing IFN-γ. J. Immunol. 171(12), 6961–6967 (2003).
  • Doherty JF, Pinder M, Tornieporth N et al. A Phase I safety and immunogenicity trial with the candidate malaria vaccine RTS,S/SBAS2 in semi-immune adults in The Gambia. Am. J. Trop. Med. Hyg. 61(6), 865–868 (1999).
  • Bojang KA, Milligan PJ, Pinder M et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet. 358(9297), 1927–1934 (2001).
  • Pinder M, Reece WH, Plebanski M et al. Cellular immunity induced by the recombinant Plasmodium falciparum malaria vaccine, RTS,S/AS02, in semi-immune adults in The Gambia. Clin. Exp. Immunol. 135(2), 286–293 (2004).
  • Alloueche A, Milligan P, Conway DJ et al. Protective efficacy of the RTS,S/AS02 Plasmodium falciparum malaria vaccine is not strain specific. Am. J. Trop. Med. Hyg. 68(1), 97–101 (2003).
  • Bojang KA, Olodude F, Pinder M et al. Safety and immunogenicty of RTS,S/AS02A candidate malaria vaccine in Gambian children. Vaccine 23(32), 4148–4157 (2005).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet. 364(9443), 1411–1420 (2004).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J. Infect. Dis. 182(5), 1486–1496 (2000).
  • Nardin EH, Calvo-Calle JM, Oliveira GA et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B-cell and universal T-cell epitopes elicits immune responses in volunteers of diverse HLA types. J. Immunol. 166(1), 481–489 (2001).
  • Nardin EH, Herrington DA, Davis J et al. Conserved repetitive epitope recognized by CD4+ clones from a malaria-immunized volunteer. Science 246(4937), 1603–1606 (1989).
  • Moreno A, Clavijo P, Edelman R et al. CD4+ T-cell clones obtained from Plasmodium falciparum sporozoite-immunized volunteers recognize polymorphic sequences of the circumsporozoite protein. J. Immunol. 151(1), 489–499 (1993).
  • Calvo-Calle JM, Hammer J, Sinigaglia F et al. Binding of malaria T-cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo: identification of a universal T-cell epitope in the Plasmodium falciparum circumsporozoite protein. J. Immunol. 159(3), 1362–1373 (1997).
  • Milich DR, McLachlan A. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234(4782), 1398–1401 (1986).
  • Milich DR, McLachlan A, Moriarty A, Thornton GB. Immune response to hepatitis B virus core antigen (HBcAg): localization of T-cell recognition sites within HBcAg/HBeAg. J. Immunol. 139(4), 1223–1231 (1987).
  • Ulrich R, Nassal M, Meisel H, Kruger DH. Core particles of hepatitis B virus as carrier for foreign epitopes. Adv. Virus Res. 50, 141–182 (1998).
  • Pumpens P, Grens E. Hepatitis B core particles as a universal display model: a structure-function basis for development. FEBS Lett. 442(1), 1–6 (1999).
  • Schodel F, Moriarty AM, Peterson DL et al. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol. 66(1), 106–114 (1992).
  • Schodel F, Wirtz R, Peterson D et al. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes. J. Exp. Med. 180(3), 1037–1046 (1994).
  • Schodel F, Peterson D, Milich DR et al. Immunization with hybrid hepatitis B virus core particles carrying circumsporozoite antigen epitopes protects mice against Plasmodium yoelii challenge. Behring Inst. Mitt. (98), 114–119 (1997).
  • Milich DR, Hughes J, Jones J, Sallberg M, Phillips TR. Conversion of poorly immunogenic malaria repeat sequences into a highly immunogenic vaccine candidate. Vaccine 20(5–6), 771–788 (2001).
  • Birkett A, Lyons K, Schmidt A et al. A Modified hepatitis B virus core particle containing multiple epitopes of the Plaasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in todent and primate hosts. Infect. Immun. 70(12), 6860–6870 (2002).
  • Nardin EH, Oliveira GA, Calvo-Calle JM et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infect. Immun. 72(11), 6519–6527 (2004).
  • Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye D. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 15(2), 176–178 (1997).
  • Langermans JA, Schmidt A, Vervenne RA et al. Effect of adjuvant on reactogenicity and long-term immunogenicity of the malaria vaccine ICC-1132 in macaques. Vaccine 23(41), 4935–4943 (2005).
  • Oliveira GA, Wetzel K, Calvo-Calle JM et al. Safety and enhancedimmunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a Phase I trial. Infect. Immun. 73(6), 3587–3597 (2005).
  • Walther M, Dunachie S, Keating S et al. Safety, immunogenicity and efficacy of a pre-erythrocytic malaria candidate vaccine, ICC-1132 formulated in Seppic ISA 720. Vaccine 23(7), 857–864 (2005).
  • Calvo-Calle JM, Oliveira GA, Nardin EH. Human CD4+ T-cells induced by synthetic peptide malaria vaccine are comparable to cells elicited by attenuated Plasmodium falciparum sporozoites. J. Immunol. 175(11), 7575–7585 (2005).
  • Lopez JA, Weilenman C, Audran R et al. A synthetic malaria vaccine elicits a potent CD8(+) and CD4(+) T-lymphocyte immune response in humans. Implications for vaccination strategies. Eur J. Immunol. 31(7), 1989–1998 (2001).
  • Meraldi V, Romero JF, Kensil C, Corradin G. A strong CD8+ T-cell response is elicited using the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei together with the adjuvant QS-21: quantitative and phenotypic comparison with the vaccine model of irradiated sporozoites. Vaccine 23(21), 2801–2812 (2005).
  • Tighe H, Corr M, Roman M, Raz E. Gene vaccination: plasmid DNA is more than just a blueprint. Immunol. Today 19(2), 89–97 (1998).
  • Wang R, Doolan DL, Le TP et al. Induction of antigen-specific cytotoxic T-lymphocytes in humans by a malaria DNA vaccine. Science 282(5388), 476–480 (1998).
  • Wang R, Epstein J, Baraceros FM et al. Induction of CD4(+) T-cell-dependent CD8(+) Type 1 responses in humans by a malaria DNA vaccine. Proc. Natl Acad. Sci. USA 98(19), 10817–10822 (2001).
  • Epstein JE, Gorak EJ, Charoenvit Y et al. Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum. Gene Ther. 13(13), 1551–1560 (2002).
  • Wang R, Richie TL, Baraceros MF et al. Boosting of DNA vaccine-elicited γ interferon responses in humans by exposure to malaria parasites. Infect. Immun. 73(5), 2863–2872 (2005).
  • Schneider J, Gilbert SC, Blanchard TJ et al. Enhanced immunogenicity for CD8+ T-cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nature Med. 4(4), 397–402 (1998).
  • Li S, Rodrigues M, Rodriguez D et al. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc. Natl Acad. Sci. USA 90(11), 5214–5218 (1993).
  • Plebanski M, Gilbert SC, Schneider J et al. Protection from Plasmodium berghei infection by priming and boosting T-cells to a single class I-restricted epitope with recombinant carriers suitable for human use. Eur J. Immunol. 28(12), 4345–4355 (1998).
  • Gilbert SC, Schneider J, Hannan CM et al. Enhanced CD8 T-cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime–boost immunisation regimes. Vaccine 20(7–8), 1039–1045 (2002).
  • Anderson RJ, Hannan CM, Gilbert SC et al. Enhanced CD8+ T-cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus. J. Immunol. 172(5), 3094–3100 (2004).
  • Moorthy VS, McConkey S, Roberts M et al. Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 21(17–18), 1995–2002 (2003).
  • Gilbert SC, Plebanski M, Harris SJ et al. A protein particle vaccine containing multiple malaria epitopes. Nature Biotechnol. 15(12), 1280–1284 (1997).
  • McConkey SJ, Reece WH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nature Med. 9(6), 729–735 (2003).
  • Bejon P, Andrews L, Andersen RF et al. Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis. 191(4), 619–626 (2005).
  • Moorthy VS, Pinder M, Reece WH et al. Safety and immunogenicity of DNA/modified vaccinia virus Ankara malaria vaccination in African adults. J. Infect. Dis. 188(8), 1239–1244 (2003).
  • Moorthy VS, Imoukhuede EB, Keating S et al. Phase 1 evaluation of 3 highly immunogenic prime–boost regimens, including a 12-month reboosting vaccination, for malaria vaccination in Gambian men. J. Infect. Dis. 189(12), 2213–2219 (2004).
  • Moorthy VS, Imoukhuede EB, Milligan P et al. A Randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. Plos Med. 1(2), E33 (2004).
  • Webster DP, Dunachie S, Vuola JM et al. Enhanced T-cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl Acad. Sci. USA 102(13), 4836–4841 (2005).
  • Vuola JM, Keating S, Webster DP et al. Differential immunogenicity of various heterologous prime–boost vaccine regimens using DNA and viral vectors in healthy volunteers. J. Immunol. 174(1), 449–455 (2005).
  • Epstein JE, Charoenvit Y, Kester KE et al. Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A. Vaccine 22(13–14), 1592–1603 (2004).
  • Wang R, Epstein J, Charoenvit Y et al. Induction in Humans of CD8+ and CD4+ T-cell and antibody responses by sequential immunization with malaria DNA and recombinant protein. J. Immunol. 172(9), 5561–5569 (2004).
  • Dunachie SJ, Webster D, Butcher G et al. The safety, immunogenicity and efficacy of the candidate malaria vaccines RTS,S/ASO2A and MVA-CS in healthy malaria-naive adults when delivered in a prime–boost strategy. Vaccine (In Press), (2006).
  • Doolan DL, Hoffman SL. DNA-based vaccines against malaria: status and promise of the Multi-Stage Malaria DNA Vaccine Operation. Int. J. Parasitol. 31(8), 753–762 (2001).
  • Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol. Rev. 201, 268–290 (2004).
  • Kursar M, Bonhagen K, Fensterle J et al. Regulatory CD4+CD25+ T-cells restrict memory CD8+ T-cell responses. J. Exp. Med. 196(12), 1585–1592 (2002).
  • Walther M, Tongren JE, Andrews L et al. Upregulation of TGF-β, FOXP3, and CD4(+)CD25(+) regulatory T-cells correlates with more rapid parasite growth in human malaria infection. Immunity 23(3), 287–296 (2005).
  • Hafalla JC, Sano G, Carvalho LH, Morrot A, Zavala F. Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T-cell responses to malaria liver stages. Proc. Natl Acad. Sci. USA 99(18), 11819–11824 (2002).
  • Morrot A, Hafalla JC, Cockburn IA, Carvalho LH, Zavala F. IL-4 receptor expression on CD8+ T-cells is required for the development of protective memory responses against liver stages of malaria parasites. J. Exp. Med. 202(4), 551–560 (2005).
  • Carvalho LH, Sano G, Hafalla JC et al. IL-4-secreting CD4+ T-cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Med. 8(2), 166–170 (2002).
  • Nardin EH, Nussenzweig RS, McGregor IA, Bryan JH. Antibodies to sporozoites: their frequent occurrence in individuals living in an area of hyperendemic malaria. Science 206(4418), 597–599 (1979).
  • Miller KD, Campbell GH, Nutman TB et al. Early acquisition of antibody to Plasmodium falciparum sporozoites in nonimmune temporary residents of Africa. J. Infect. Dis. 158(4), 868–871 (1988).
  • Ocana-Morgner C, Mota MM, Rodriguez A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 197(2), 143–151 (2003).
  • Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906), 498–511 (2002).
  • Shibui A, Shiibashi T, Nogami S, Sugano S, Watanabe J. A novel method for development of malaria vaccines using full-length cDNA libraries. Vaccine 23(34), 4359–4366 (2005).
  • Moore AC, Hill AV. Progress in DNA-based heterologous prime–boost immunization strategies for malaria. Immunol. Rev. 199, 126–143 (2004).
  • Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature 415(6872), 694–701 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.