179
Views
48
CrossRef citations to date
0
Altmetric
Vaccine Profile

Development of the PANVAC™-VF vaccine for pancreatic cancer

&
Pages 9-19 | Published online: 09 Jan 2014

References

  • Buist JB. The life-history of the microorganisms associated with variola and vaccinia. Proc. R. Soc. 13, 603 (1886).
  • Baxby D. Edward Jenner’s Inquiry; a bicentenary analysis. Vaccine 17(4), 301–307 (1999).
  • Johnson GP, Goebel SJ, Paoletti E. An update on the vaccinia virus genome. Virology 196(2), 381–401 (1993).
  • Gillard S, Spehner D, Drillien R. Mapping of a vaccinia host range sequence by insertion into the viral thymidine kinase gene. J. Virol. 53(1), 316–318 (1985).
  • Edghill-Smith Y, Golding H, Manischewitz J et al. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nature Med. 11(7), 740–747 (2005).
  • Kennedy JS, Frey SE, Yan L et al. Induction of human T cell-mediated immune responses after primary and secondary smallpox vaccination. J. Infect. Dis. 190(7), 1286–1294 (2004).
  • Paoletti E. Applications of pox virus vectors to vaccination: an update. Proc. Natl Acad. Sci. USA 93(21), 11349–11353 (1996).
  • Breman JG, Arita I, Fenner F. Preventing the return of smallpox. N. Engl. J. Med. 348(5), 463–466 (2003).
  • Carroll MW, Moss B. Poxviruses as expression vectors. Curr. Opin. Biotechnol. 8(5), 573–577 (1997).
  • Smith GL. Vaccinia virus vectors for gene expression. Curr. Opin. Biotechnol. 2(5), 713–717 (1991).
  • Essajee S, Kaufman HL. Poxvirus vaccines for cancer and HIV therapy. Expert Opin. Biol. Ther. 4(4), 575–588 (2004).
  • Starnes CO. Coley’s toxins in perspective. Nature 357(6373), 11–12 (1992).
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3(11), 991–998 (2002).
  • Ostrand-Rosenberg S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr. Opin. Immunol. 16(2), 143–150 (2004).
  • Stevenson FK. Update on cancer vaccines. Curr. Opin. Oncol. 17(6), 573–577 (2005).
  • Panicali D, Davis SW, Weinberg RL, Paoletti E. Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 80(17),5364–5368 (1983).
  • Gold P, Freedman SO. Demonstration of tumor specific antigen in human colonic carcinomata by immunological tolerance and absorption techniques. J. Exp. Med. 121, 439 (1965).
  • Robbins PF, Eggensperger D, Qi CF, Schlom J. Definition of the expression of the human carcinoembryonic antigen and non-specific cross-reacting antigen in human breast and lung carcinomas. Int. J. Cancer 53(6), 892–897 (1993).
  • Tendler A, Kaufman HL, Kadish AS. Increased carcinoembryonic antigen expression in cervical intraepithelial neoplasia grade 3 and in cervical squamous cell carcinoma. Hum. Pathol. 31(11), 1357–1362 (2000).
  • Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57, 327–334 (1989).
  • Oikawa S, Nakazato H, Kosaki G. Primary structure of human carcinoembryonic antigen (CEA) deduced from cDNA sequence. Biochem. Biophys. Res. Commun. 142(2), 511–518 (1987).
  • Siler K, Eggensperger D, Hand PH et al. Therapeutic efficacy of a high-affinity anticarcinoembryonic antigen monoclonal antibody (COL-1). Biotechnol. Ther. 4(3–4), 163–181 (1993).
  • Kaufman H, Schlom J, Kantor J. A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). Int. J. Cancer 48(6), 900–907 (1991).
  • Kantor J, Irvine K, Abrams S, Kaufman H, DiPietro J, Schlom J. Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine. J. Natl Cancer Inst. 84(14), 1084–1091 (1992).
  • Kantor J, Irvine K, Abrams S et al. Immunogenicity and safety of a recombinant vaccinia virus vaccine expressing the carcinoembryonic antigen gene in a nonhuman primate. Cancer Res. 52(24), 6917–6925 (1992).
  • Kaufman H, DiVito J Jr, Horig H. Immunotherapy for pancreatic cancer: current concepts. Hematol. Oncol. Clin. North Am. 16(1), 159–197 (2002).
  • Taylor-Papadimitriou J, Burchell JM, Plunkett T et al. MUC1 and the immunobiology of cancer. J. Mammary Gland Biol. Neoplasia. 7(2), 209–221 (2002).
  • Hiltbold EM, Alter MD, Ciborowski P, Finn OJ. Presentation of MUC1 tumor antigen by class I MHC and CTL function correlate with the glycosylation state of the protein taken up by dendritic cells. Cell Immunol. 194(2), 143–149 (1999).
  • Finn OJ, Jerome KR, Henderson RA et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev. 145, 61–89 (1995).
  • Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res. 54(11), 2856–2860 (1994).
  • Graham RA, Burchell JM, Beverley P, Taylor-Papadimitriou J. Intramuscular immunisation with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic mouse tumour cells. Int. J. Cancer 65(5), 664–670 (1996).
  • Akagi J, Nakagawa K, Egami H, Ogawa M. Induction of HLA-unrestricted and HLA-class-II-restricted cytotoxic T lymphocytes against MUC-1 from patients with colorectal carcinomas using recombinant MUC-1 vaccinia virus. Cancer Immunol. Immunother. 47(1), 21–31 (1998).
  • Cohen S, Kaufman HL. TG-4010 transgene. Curr. Opin. Investig. Drugs 5(12), 1319–1328 (2004).
  • Parker KC, Shields M, DiBrino M, Brooks A, Coligan JE. Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. Immunol. Res. 14(1), 34–57 (1995).
  • Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Ann. Rev. Immunol. 11, 403–450 (1993).
  • Collins EJ, Frelinger JA. Altered peptide ligand design: altering immune responses to class I MHC/peptide complexes. Immunol. Rev. 163, 151–160 (1998).
  • Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. 57(20), 4570–4577 (1997).
  • Tsang KY, Palena C, Gulley J, Arlen P, Schlom J. A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1. Clin. Cancer Res. 10(6), 2139–2149 (2004).
  • Chambers CA. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol. 22(4), 217–223 (2001).
  • Heeg K, Wagner H. Induction of responsiveness in superantigen-induced anergic T cells. Role of ligand density and costimulatory signals. J. Immunol. 155(1), 83–92 (1995).
  • Guelly C, Kupcu Z, Zalusky D, Karner M, Zehetner M, Schweighoffer T. Activation requirements of circulating antigen-specific human CD8(+) memory T cells probed with insect cell-based artificial antigen-presenting cells. Eur. J. Immunol. 32(1), 182–192 (2002).
  • Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunol. 3(7), 611–618 (2002).
  • Evans DE, Weinberg AD. Boosting T cell costimulation in cancer: the possibilities seem endless. Int. Rev. Immunol. 22(2), 173–194 (2003).
  • Hodge JW, McLaughlin JP, Abrams SI, Shupert WL, Schlom J, Kantor JA. Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen gene results in enhanced specific T-cell responses and antitumor immunity. Cancer Res. 55(16), 3598–3603 (1995).
  • Hodge JW, Sabrezevari H, Yafal AG et al. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res. 59(22), 5800–5807 (1999).
  • Grosenbach DW, Barrientos JC, Schlom J, Hodge JW. Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res. 61(11), 4497–4505 (2001).
  • Yang S, Hodge JW, Grosenbach DW, Schlom J. Vaccines with enhanced costimulation maintain high avidity memory CTL. J. Immunol. 175(6), 3715–3723 (2005).
  • Yang S, Hodge JW, Grosenbach DW, Schlom J. Vaccines with enhanced costimulation maintain high avidity memory CTL. J. Immunol. 175(6), 3715–3723 (2005).
  • McLaughlin JP, Schlom J, Kantor JA, Greiner JW. Improved immunotherapy of a recombinant carcinoembryonic antigen vaccinia vaccine when given in combination with interleukin-2. Cancer Res. 56(10), 2361–2367 (1996).
  • Elkins KL, Ennist DL, Winegar RK, Weir JP. In vivo delivery of interleukin-4 by a recombinant vaccinia virus prevents tumor development in mice. Hum. Gene Ther. 5(7), 809–820 (1994).
  • Kaufman HL, Rao JB, Irvine KR, Bronte V, Rosenberg SA, Restifo NP. Interleukin-10 enhances the therapeutic effectiveness of a recombinant poxvirus-based vaccine in an experimental murine tumor model. J. Immunother. 22(6), 489–496 (1999).
  • Rao JB, Chamberlain RS, Bronte V et al. IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7–1 expression. J. Immunol. 156(9), 3357–3365 (1996).
  • Chatterjee SK, Qin H, Manna S, Tripathi PK. Recombinant vaccinia virus expressing cytokine GM-CSF as tumor vaccine. Anticancer Res. 19(4B), 2869–2873 (1999).
  • Kaufman HL, Flanagan K, Lee CS, Perretta DJ, Horig H. Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective antitumor responses without toxicity. Vaccine 20(13–14), 1862–1869 (2002).
  • Carroll MW, Overwijk WW, Surman DR, Tsung K, Moss B, Restifo NP. Construction and characterization of a triple-recombinant vaccinia virus encoding B7–1, interleukin-12, and a model tumor antigen. J. Natl Cancer Inst. 90(24), 1881–1887 (1998).
  • Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anticytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190(3), 355–366 (1999).
  • Hurwitz AA, Yu TF, Leach DR, Allison JP. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl Acad. Sci. USA 95(17), 10067–10071 (1998).
  • Dunussi-Joannopoulos K, Weinstein HJ, Arceci RJ, Croop JM. Gene therapy with B7.1 and GM-CSF vaccines in a murine AML model. J. Pediatr. Hematol. Oncol. 19(6), 536–540 (1997).
  • Grosenbach DW, Barrientos JC, Schlom J, Hodge JW. Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res. 61(11), 4497–4505 (2001).
  • Aarts WM, Schlom J, Hodge JW. Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Res. 62(20), 5770–5777 (2002).
  • Viner KM, Isaacs SN. Activity of vaccinia virus-neutralizing antibody in the sera of smallpox vaccinees. Microbes Infect. 7(4), 579–583 (2005).
  • Hodge JW, McLaughlin JP, Kantor JA, Schlom J. Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15(6–7), 759–768 (1997).
  • Eades-Perner AM, van der Putten H, Hirth A et al. Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern. Cancer Res. 54, 4169–4176 (1994).
  • Aarts WM, SchlomJ, Hodge JW. Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Res. 62(20), 5770–5777 (2002).
  • McAneny D, Ryan C, Beazley R, Kaufman H. Results of a Phase I clinical trial using a recombinant vaccinia-carcinoembryonic antigen (CEA) vaccine in patients with advanced colorectal cancer. Ann. Surg. Oncol. 3(5), 495–500 (1996).
  • Anthony DD, Lehmann PV. T-cell epitope mapping using ELISPOT approach. Methods 29(3), 260–269 (2003).
  • Arlen P, Tsang KY, Marshall JL et al. The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide vs. recombinant poxvirus vaccines. Cancer Immunol. Immunother. 49(10), 517–529 (2000).
  • Marshall JL, Hawkins MJ, Tsang KY et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J. Clin. Oncol. 17, 332–337 (1999).
  • Foon KA, Chakraborty M, John WJ, Sherratt A, Kohler H, Bhattacharya-Chatterjee M. Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J. Clin. Invest. 96(1), 334–342 (1995).
  • Marshall JL, Hoyer RJ, Toomey MA et al. Phase I study in advanced cancer patients of a diversified prime and boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anticarcinoembryonic antigen immune responses. J. Clin. Oncol. 18, 3964–3973 (2000).
  • von Mehren M, Arlen P, Tsang KY et al. Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin. Cancer Res. 6(6), 2219–2228 (2000).
  • Horig H, Lee DS, Conkright W et al. B7.1 costimulation enhances the response of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen (CEA). Cancer Immunol. Immunother. 49, 504–514 (2000).
  • Marshall JL, Gulley JL, Arlen PM et al. Phase I study of sequential vaccinations with fowlpox-CEA (6D)-TRICOM alone and sequentially with vaccinia-CEA (6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J. Clin. Oncol. 23(4) 720–731 (2005).
  • Schuetz TJ, Kaufman HL, Marshall J, Safran H. Extended survival in second-line pancreatic cancer after therapeutic vaccination. Proc. Am. Soc. Clin. Oncol. 23, S184 (2005).
  • Greenlee RT, Murray T, Bolden S et al. Cancer Statistics, 2000. CA Cancer J. Clin. 50, 7–33 (2000).
  • Rosenberg L. Pancreatic cancer: a review of emerging therapies. Drugs 59, 1071–1089 (2000).

Website

  • Surveillance, Epidemiology, and End Results (SEER) Program: Cancer Statistics Review, 1973–1997. http://seer.cancer.gov/Publications/CSR1973_1997/pancreas.pdf, 2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.