54
Views
4
CrossRef citations to date
0
Altmetric
Review

Suppressor of cytokine signaling 1 inhibition strategy to enhance anti-HIV vaccination

, &
Pages 495-503 | Published online: 09 Jan 2014

References

  • Nabel GJ. Challenges and opportunities for development of an AIDS vaccine. Nature410, 1002–1007 (2001).
  • McMichael AJ, Hanke T. HIV vaccines 1983–2003. Nat. Med.9, 874–880 (2003).
  • Burton DR, Desrosiers RC, Doms RW et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol.5, 233–236 (2004).
  • Letvin NL. Progress toward an HIV vaccine. Ann. Rev. Med.56, 213–223 (2005).
  • Robinson HL, Amara RR. T cell vaccines for microbial infections. Nat. Med.11, S25–S32 (2005).
  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol.4, 199–210 (2004).
  • Flynn NM, Forthal DN, Harro CD et al. Placebo-controlled Phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis.191, 654–665 (2005).
  • Koff WC, Johnson PR, Watkins DI et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat. Immunol.7, 19–23 (2006).
  • Cohen J. AIDS vaccines. HIV dodges one-two punch. Science305, 1545–1547 (2004).
  • Hanke T, McMichael AJ, Mwau M et al. Development of a DNA-MVA/HIVA vaccine for Kenya. Vaccine20, 1995–1998 (2002).
  • Hanke T, McMichael AJ, Samuel RV et al. Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine21, 108–114 (2002).
  • Mwau M, Cebere I, Sutton J et al. A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J. Gen. Virol.85, 911–919 (2004).
  • Coordinating Committee of the Global HIV/AIDS Vaccine Enterprise. The Global HIV/AIDS Vaccine Enterprise: scientific strategic plan. PLoS Med.2(2), 111–121 (2005).
  • Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat. Med.10, 806–810 (2004).
  • Goulder PJ, Watkins DI. HIV and SIV CTL escape: implications for vaccine design. Nat. Rev. Immunol.4, 630–640 (2004).
  • Schmitz JE, Kuroda MJ, Santra S et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science283, 857–860 (1999).
  • Jin X, Bauer DE, Tuttleton SE et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189, 991–998 (1999).
  • Rowland-Jones SL, Dong T, Fowke KR et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J. Clin. Invest.102, 1758–1765 (1998).
  • Harari A, Petitpierre S, Vallelian F, Pantaleo G. Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood103, 966–972 (2004).
  • Betts MR, Ambrozak DR, Douek DC et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J. Virol.75, 11983–11991 (2001).
  • Mascola JR, Stiegler G, VanCott TC et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med.6, 207–210 (2000).
  • Ferrantelli F, Rasmussen RA, Buckley KA et al. Complete protection of neonatal rhesus macaques against oral exposure to pathogenic simian-human immunodeficiency virus by human anti-HIV monoclonal antibodies. J. Infect. Dis.189, 2167–2173 (2004).
  • Trkola A, Kuster H, Rusert P et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat. Med.11, 615–622 (2005).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392, 245–252 (1998).
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Ann. Rev. Immunol.20, 197–216 (2002).
  • Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol.3, 169–176 (2003).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511 (2004).
  • Schlaepfer E, Audige A, Joller, H, Speck RF. TLR7/8 triggering exerts opposing effects in acute versus latent HIV infection. J. Immunol.176, 2888–2895 (2006).
  • Grohmann U, Belladonna ML, Bianchi R et al. IL-12 acts directly on DC to promote nuclear localization of NF-kB and primes DC for IL-12 production. Immunity9, 315–323 (1998).
  • Pan J, Zhang M, Wang J et al. Interferon-g is an autocrine mediator for dendritic cell maturation. Immunol. Lett.94, 141–151 (2004).
  • Jinushi M, Takehara T, Tatsumi T et al. Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J. Immunol.171, 5423–5429 (2003).
  • Qu C, Moran TM, Randolph GJ. Autocrine type I IFN and contact with endothelium promote the presentation of influenza A virus by monocyte-derived APC. J. Immunol.170, 1010–1018 (2003).
  • Montoya M, Schiavoni G, Mattei F et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood99, 3263–3271 (2002).
  • Darnell JE Jr, Kerr IM, Stark GR. JAK–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 1415–1421 (1994).
  • Darnell JE Jr. STATs and gene regulation. Science277, 1630–1635 (1997).
  • Ihle JN. Cytokine receptor signalling. Nature377, 591–594 (1995).
  • O’Shea JJ, Gadina, M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell109(Suppl), S121–S131 (2002).
  • Shuai K, Liu B. Regulation of JAK–STAT signalling in the immune system. Nat. Rev. Immunol.3, 900–911 (2003).
  • Yasukawa H, Sasaki, A, Yoshimura A. Negative regulation of cytokine signaling pathways. Ann. Rev. Immunol.18, 143–164 (2000).
  • Kubo M, Hanada, T, Yoshimura A, Suppressors of cytokine signaling and immunity. Nat. Immunol.4, 1169–1176 (2003).
  • Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev. Immunol.2, 410–416 (2002).
  • Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Ann. Rev. Immunol.22, 503–529 (2004).
  • Naka T, Narazaki M, Hirata M et al. Structure and function of a new STAT-induced STAT inhibitor. Nature387, 924–929 (1997).
  • Starr R, Willson TA, Viney EM et al. A family of cytokine-inducible inhibitors of signalling. Nature387, 917–921 (1997).
  • Endo TA, Masuhara M, Yokouchi M et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature387, 921–924 (1997).
  • Gregorieff A, Pyronnet S, Sonenberg N, Veillette A. Regulation of SOCS-1 expression by translational repression. J. Biol. Chem.275, 21596–21604 (2000).
  • Siewert E, Muller-Esterl W, Starr R, Heinrich PC, Schaper F. Different protein turnover of interleukin-6-type cytokine signalling components. Eur. J. Biochem.265, 251–257 (1999).
  • Marine JC, Topham DJ, McKay C et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell98, 609–616 (1999).
  • Alexander WS, Starr R, Fenner JE et al. SOCS1 is a critical inhibitor of interferon g signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell98, 597–608 (1999).
  • Naka T, Tsutsui H, Fujimoto M et al. SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-g and IL-4 signaling in vivo. Immunity14, 535–545 (2001).
  • Yasukawa H, Misawa, H, Sakamoto H et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J.18, 1309–1320 (1999).
  • Nicholson SE, Willson TA, Farley A et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J.18, 375–385 (1999).
  • Narazaki M, Fujimoto M, Matsumoto T et al. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc. Natl Acad. Sci. USA95, 13130–13134 (1998).
  • Kamizono S, Hanada T, Yasukawa H et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J. Biol. Chem.276, 12530–12538 (2001).
  • Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol. Cell. Biol.22, 3316–3326 (2002).
  • Naka T, Matsumoto T, Narazaki M et al. Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc. Natl Acad. Sci. USA95, 15577–15582 (1998).
  • Nakagawa R, Naka T, Tsutsui H et al. SOCS-1 participates in negative regulation of LPS responses. Immunity17, 677–687 (2002).
  • Hanada Yoshida H, Kato ST et al. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity19, 437–450 (2003).
  • Kinjyo I, Hanada T, Inagaki-Ohara K et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity17, 583–591 (2002).
  • Baetz A, Frey M, Heeg K, Dalpke AH. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate Toll-like teceptor dignaling in innate immune cells. J. Biol. Chem.279, 54708–54715 (2004).
  • Gingras S, Parganas E, de Pauw A, Ihle JN, Murray PJ. Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of Toll-like receptor signaling. J. Biol. Chem.279, 54702–54707 (2004).
  • Ryo A, Suizu F, Yoshida Y et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell.12, 1413–1426 (2003).
  • Mansell A, Smith R, Doyle SL et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol.7, 148–155 (2006).
  • Fries AB, Ziegler TE, Kurian JR, Jacoris S, Pollak SD. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc. Natl Acad. Sci. USA102, 17237–17240 (2005).
  • Shen L, Evel-Kabler K, Strube, R, Chen SY. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol.22, 1546–1553 (2004).
  • Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY. SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J. Clin. Invest.116, 90–100 (2006).
  • Song XT, Evel-Kabler K., Rollins L et al. An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuators in dendritic cells. PLoS Med.3, e11 (2006).
  • Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001).
  • Scherer LJ, Rossi JJ. Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol.21, 1457–1465 (2003).
  • Brummelkamp TR, Bernards, R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002).
  • Hanada T, Tanaka K, Matsumura Y et al. Induction of hyper Th1 cell-type immune responses by dendritic cells lacking the suppressor of cytokine signaling-1 gene. J. Immunol.174, 4325–4332 (2005).
  • Allen JE, Maizels RM. Th1-Th2: reliable paradigm or dangerous dogma? Immunol. Today18, 387–392 (1997).
  • Balazs M, Martin F, Zhou T, Kearney J, Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity17, 341–352 (2002).
  • Litinskiy MB, Nardelli B, Hilbert DM et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol.3, 822–829 (2002).
  • MacLennan I, Vinuesa C. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity17, 235–238 (2002).
  • Fauci AS, Mavilio D, Kottilil S. NK cells in HIV infection: paradigm for protection or targets for ambush. Nat. Rev. Immunol.5, 835–843 (2005).
  • Lifson JD, Rossio JL, Piatak M Jr et al. Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J. Virol.75, 10187–10199 (2001).
  • Stober D, Jomantaite I, Schirmbeck, R, Reimann J. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J. Immunol.170, 2540–2548 (2003).
  • Adam C, King S, Allgeier T et al. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood106, 338–344 (2005).
  • Sallusto F, Geginat, J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Ann. Rev. Immunol.22, 745–763 (2004).
  • Seaman MS, Peyerl FW, Jackson SS et al. Subsets of memory cytotoxic T lymphocytes elicited by vaccination influence the efficiency of secondary expansion in vivo. J. Virol.78, 206–215 (2004).
  • Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat. Immunol.4, 355–360 (2003).
  • Iezzi G, Karjalainen, K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity8, 89–95 (1998).
  • Iezzi G, Scotet E, Scheidegger, D, Lanzavecchia A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol.29, 4092–4101 (1999).
  • Langenkamp A, Casorati G, Garavaglia C et al. T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur. J. Immunol.32, 2046–2054 (2002).
  • Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science290, 92–97 (2000).
  • Gor DO, Rose NR, Greenspan NS. TH1-TH2: a procrustean paradigm. Nat. Immunol.4, 503–505 (2003).
  • Colonna M. Can we apply the TH1-TH2 paradigm to all lymphocytes? Nat. Immunol.2, 899–900 (2001).
  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol.5, 834–839 (2003).
  • Judge AD, Sood V, Shaw JR et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol.23, 457–462 (2005).
  • Hornung V, Guenthner-Biller M, Bourquin C et al. Sequence-specific potent induction of IFN-a by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med.11, 263–270 (2005).
  • Starr R, Metcalf D, Elefanty AG et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl Acad. Sci. USA95, 14395–14399 (1998).
  • Bullen DV, Darwiche R, Metcalf D, Handman E, Alexander WS. Neutralization of interferon-g in neonatal SOCS1-/- mice prevents fatty degeneration of the liver but not subsequent fatal inflammatory disease. Immunology104, 92–98 (2001).
  • Metcalf D, Mifsud S, Di Rago L, Alexander WS. The lethal effects of transplantation of Socs1-/- bone marrow cells into irradiated adult syngeneic recipients. Proc. Natl Acad. Sci. USA100, 8436–8441 (2003).
  • Chong MM, Metcalf D, Elefanty AG et al. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity18, 475–487 (2003).
  • Marasco WA, Haseltine WA, Chen SY. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody [see comments]. Proc. Natl Acad. Sci. USA90, 7889–7893 (1993).
  • Mustelin T VT, Bottini N. Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol.5, 43–57 (2005).
  • Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5, 446–458 (2005).
  • VanCott TC, Mascola JR, Kaminski RW et al. Antibodies with specificity to native gp120 and neutralization activity against primary human immunodeficiency virus type 1 isolates elicited by immunization with oligomeric gp160. J. Virol.71, 4319–4330 (1997).
  • VanCott TC, Mascola, JR, Loomis-Price LD et al. Cross-subtype neutralizing antibodies induced in baboons by a subtype E gp120 immunogen based on an R5 primary human immunodeficiency virus type 1 envelope. J. Virol.73, 4640–4650 (1999).
  • Wrin T, Nunberg JH. HIV-1MN recombinant gp120 vaccine serum, which fails to neutralize primary isolates of HIV-1, does not antagonize neutralization by antibodies from infected individuals. AIDS8, 1622–1623 (1994).
  • Belshe RB, Gorse GJ, Mulligan MJ et al. Induction of immune responses to HIV-1 by canarypox virus (ALVAC) HIV-1 and gp120 SF-2 recombinant vaccines in uninfected volunteers. NIAID AIDS Vaccine Evaluation Group. AIDS12, 2407–2415 (1998).
  • Yang X, Wyatt, R, Sodroski J. Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J. Virol.75, 1165–1171 (2001).
  • Grundner C, Mirzabekov T, Sodroski J, Wyatt R. Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins. J. Virol.76, 3511–3521 (2002).
  • Yang X, Lee J, Mahony EM et al. Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J. Virol.76, 4634–4642 (2002).
  • Gao F, Weaver EA, Lu Z et al. Antigenicity and immunogenicity of a synthetic human immunodeficiency virus type 1 group m consensus envelope glycoprotein. J. Virol.79, 1154–1163 (2005).
  • You Z, Huang X, Hester J, Toh HC, Chen SY. Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res.61, 3704–3711 (2001).
  • Hauser H, Shen L, Gu QL, Krueger S, Chen SY. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gen. Ther.11, 924–932 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.