256
Views
49
CrossRef citations to date
0
Altmetric
Review

Prospects for a vaccine against otitis media

&
Pages 517-534 | Published online: 09 Jan 2014

References

  • Teele DW, Klein JO, Rosner B. Epidemiology of otitis media during the first seven years of life in children in Greater Boston: a prospective, cohort study. J. Infect. Dis.160, 83–94 (1989).
  • Teele DW, Klein JO, Chase C, Menyuk P, Rosner BA; and the Greater Boston Otitis Media Study Group. Otitis media in infancy and intellectual ability, school achievement, speech, and language at age 7 years. J. Infect. Dis.162, 685–694 (1990).
  • Bennett KE, Haggard MP, Silva PA, Stewart IA. Behaviour and developmental effects of otitis media with effusion into the teens. Arch. Dis. Child.85, 91–95 (2001).
  • Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM. Otitis media. Lancet465–473 (2004).
  • Advisory Committee on Immunization Practices. Preventing pneumococcal disease among infants and children: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep.49, 1–35 (2000).
  • Finkelstein JA, Metlay JP, Davis RL et al. Antimicrobial use in defined populations of infants and young children. Arch. Pediatr. Adolesc. Med.154, 395–400 (2000).
  • Brixner DI. Improving acute otitis media outcomes through proper antibiotic use and adherence. Am. J. Manag. Care11(Suppl.), S202–S210 (2005).
  • Joki-Erkkila VP, Laippala P, Pukander J. Increase in paediatric acute otitis media diagnosed by primary care in two Finnish municipalities – 1994–5 versus 1978–9. Epidemiol. Infect.121, 529–534 (1998).
  • Fried VM, Makuc DM, Rooks RN. Ambulatory health care visits by children: principal diagnosis and place of visit. Vital Health Stat.137, 1–23. (1998).
  • Charles J, Pan Y, Britt H. Trends in childhood illness and treatment in Australian general practice, 1971–2001. MJA180, 216–219 (2004).
  • Gonzales R, Malone DC, Maselli JH, Sande MA. Excessive antibiotic use for acute respiratory infections in the United States. Clin. Infect. Dis.33, 757–762 (2001).
  • Howard DH, McGowan JE Jr. Initial and follow-up costs by treatment outcome for children with respiratory infections. Pediatrics113, 1352–1356 (2004).
  • Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995–2003. Pediatr. Infect. Dis. J.23, 824–828 (2004).
  • Dowell SF, Butler JC, Giebink GC. et al. Acute otitis media: management and surveillance in an era of pneumococcal resistance a report from the Drug-resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr. Infect. Dis. J.18, 1–9 (1999).
  • Hoover H, Roddey OF. The overlooked importance of tympanic membrane bulging. Pediatrics115, 513 (2005).
  • Pellman H. Thoughts on the American Academy of Pediatrics/American Academy of Family Physicians Clinical Practice Guidelines on acute otitis media: a different perspective. Pediatrics115, 1443–1444 (2005).
  • Pichichero ME, Casey JR. Acute otitis media: making sense of recent guidelines on antimicrobial treatment. J. Fam. Pract.54, 313–322 (2005).
  • American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media. Diagnosis and management of acute otitis media. Pediatrics113, 1451–1465 (2004).
  • American Academy of Pediatrics. Otitis media with effusion. Pediatrics113, 1412–1429 (2004).
  • Glasziou PP, Del Mar CB, Sanders SL, Hayem M. Antibiotics for acute otitis media in children (Cochrane review). In: The Cochrane Library, Issue 3, John Wiley and Sons, Ltd., Chichester, UK (2004).
  • Garcia-Rodriguez JA, Fresnadillo Martinez MJ. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J. Antimicrob. Chemother.50(Suppl.), 59–73 (2002).
  • Casselbrant M, Mandel EM. Epidemiology: In:Evidence-based otitis media. Rosenfeld RM, Bluestone CD, BC Decker (Eds.), Hamilton, ON, Canada 117–136 (1999).
  • Stool SE, Berg AO, Berman S et al. Otitis media with effusion in young children, Clinical Practice Guideline, Number 12. AHCPR Publication No. 94–0622. Agency for Health Care Policy and Research, Public Health Services US Department of Health and Human Services, Rockville, MD, USA (1998).
  • Williams RL, Chalmers TC, Stange KC, Chalmers FT, Bowlin SJ. Use of antibiotics in preventing recurrent acute otitis media and in treating otitis media with effusion. A meta-analytic attempt to resolve the brouhaha. JAMA270, 1344–1351 (1993).
  • Daly K, Casselbrant M, Hoffman H et al. Epidemiology, natural history, and risk factors. Annal. Otol. Rhinol. Laryngol.111, 19–25 (2002).
  • Faden H, Duffy L, Williams A, Krystofik D, Wolf J. Epidemiology of nasopharyngeal colonization with nontypeable Haemophilus influenzae in the first two years of life. J. Infect. Dis.172, 132–135 (1995).
  • Paradise JL, Rockette HE, Colborn K et al. Otitis media in 2253 Pittsburgh-area infants: prevalence and risk factors during the first two years of life. Pediatrics99, 318–333 (1997).
  • Heikkinen T, Chonmaitree T. Importance of respiratory viruses in acute otitis media. Clin. Microbiol. Rev.16, 230–241 (2003).
  • Klein J. Otitis media. Clin. Infect. Dis.19, 823–833 (1994).
  • Leach A, Boswell JB, Asche V et al. Bacterial colonization of the nasopharynx predicts very early onset and persistence of otitis media in Australian aboriginal infants. Pediatr. Infect. Dis. J.13, 983–989 (1994).
  • Post JC, Preston RA, Aul JJ et al. Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA273, 1598–1604 (1995).
  • Hendolin P, Markkanen A, Ylikoski J et al. Use of multiplex PCR for simultaneous detection of four bacterial species in middle ear effusions. J. Clin. Micro.35, 2854–2858 (1997).
  • Gok U, Bulut Y, Keles E et al. Bacteriological and PCR analysis of clinical material aspirated from otitis media with effusions. Int. J. Pediatr. Otorhinolaryngol.60, 49–54 (2001).
  • Pitkaranta A, Virolainen A, Jero J et al. Detection of rhinovirus, respiratory syncytial virus, and corona virus infections in acute otitis media by reverse transcriptase polymerase chain reaction. Pediatrics102, 291–295 (1998).
  • Sung BS, Chonmaitree T, Broemeling LD et al. Association of rhinovirus infection with poor bacteriologic outcome of bacterial-viral otitis media. Clin. Infect. Dis.17, 38–42 (1993).
  • Chonmaitree T, Henrickson KJ. Detection of respiratory viruses in the middle ear fluids of children with acute otitis media by multiplex reverse transcription:polymerase chain reaction assay. Pediatr. Infect. Dis. J.19, 258–260 (2000).
  • Ishibashi T, Monobe H, Nomura Y, Shinogami M, Yano J. Multiplex nested reverse transcription-polymerase chain reaction for respiratory viruses in acute otitis media. Ann. Otol. Rhinol. Laryngol.112, 252–257 (2003).
  • Osterhaus A, Fouchier R. Human metapneumovirus in the community. Lancet361, 890–891 (2003).
  • Arden KE, Nissen MD, Sloots TP, Mackay IM. New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J. Med. Virol.75, 455–462 (2005).
  • Williams JV, Wang CK, Yang CF, et al. The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J. Infect. Dis.193, 387–395 (2006).
  • Kodama S, Hirano T, Suenaga S, Abe N, Suzuki M. Eustachian tube possesses immunological characteristics as a mucosal effector site and responds to P6 outer membrane protein of nontypeable Haemophilus influenzae. Vaccine24, 1016–1027 (2006).
  • Suenaga S, Kodama S, Ueyama S, Suzuki M, Mogi G. Mucosal immunity of the middle ear: analysis at the single cell level. Laryngoscope111(2), 290–296 (2001).
  • Clancy RL, Cripps AW, Yeung S et al. Salivary and serum antibody responses to Haemophilus influenzae infection in Papua New Guinea. PNG Med. J.30, 271–276 (1987).
  • Faden H, Duffy L, Wasielewski R, Wolf J, Krystofik D, Tung Y. Relationship between nasopharyngeal colonization and the development of otitis media in children. Tonawanda/Williamsville Pediatrics. J. Infect. Dis.175, 1440–1445 (1997).
  • Faden H, Waz MJ, Bernstein JM, Brodsky L, Stanievich J, Ogra PL. Nasopharyngeal flora in the first three years of life in normal and otitis-prone children. Ann. Otol. Rhinol. Laryngol.100, 612–615 (1991).
  • Straetemans M, Wiertsema SP, Sanders EA et al. Immunological status in the aetiology of recurrent otitis media with effusion: serum immunoglobulin levels, functional mannose-binding lectin and Fc receptor polymorphisms for IgG. J. Clin. Immunol.25, 78–86 (2005).
  • Kay DJ, Nelson M, Rosenfeld RM. Meta-analysis of tympanostomy tube sequelae. Otolaryngol. Head Neck Surg.124, 374–380 (2001).
  • Huang SS, Platt R, Rifas-Shiman SL, Pelton SI, Goldmann D, Finkelstein JA. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics116(3), E408–E413 (2005).
  • O’BrienKL, Dagan R. The potential indirect effect of conjugate pneumococcal vaccines. Vaccine21, 1815–1825 (2003).
  • Spratt BG, Greenwood BM. Prevention of pneumococcal disease by vaccination: does serotype replacement matter? Lancet356, 1210–1211 (2000).
  • Ghaffar F, Barton T, Lozano J et al. Effect of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae in the first 2 years of life. Clin. Infect. Dis.39, 930–938 (2004).
  • Kilpi T, Ahman H, Jokinen J. et al. Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7 valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin. Infect. Dis.37, 1155–1164 (2003).
  • Veenhoven R, Bogaert D, Uiterwaal C et al. Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on recurrent acute otitis media: a randomised study. Lancet361, 2189–2195, (2003).
  • Dagan R, Givon-Lavi N, Zamir O, Fraser D. Effect of a nonavalent conjugate vaccine on carriage of antibiotic-resistant Streptococcus pneumoniae in day-care centers. Pediatr. Infect. Dis. J.22, 532–540 (2003).
  • Dagan R, Givon-Lavi N, Zamir O et al. Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care centers. J. Infect. Dis.185, 927–936 (2002).
  • Escola J, Kilpi T, Palmu A et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med.344, 403–409 (2001).
  • Porat N, Arguedas A, Spratt BG et al. Emergence of penicillin-nonsusceptible Streptococcus pneumoniae clones expressing serotypes not present in the antipneumococcal conjugate vaccine. J. Infect. Dis.190, 2154–2161 (2004).
  • Hanage WP, Auranen K, Syrjanen R et al. Ability of pneumococcal serotypes and clones to cause acute otitis media: implications for the prevention of otitis media by conjugate vaccines. Infect. Immun.72, 76–81 (2004).
  • Bogaert D, van Belkum A, Sluijter M et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet363, 1871–1872 (2004).
  • Regev-Yochay G, Dagan R, Raz M et al. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA292, 716–720 (2004).
  • Shulman ST, Tanz RR. Streptococcal otitis media: from epidemiology to pathogenesis. Clin. Infect. Dis.41, 42–44 (2005).
  • Segal N, Givon-Lavi N, Leibovitz E, Yagupsky P, Leiberman A, Dagan R. Acute otitis media caused by Streptococcus pyogenes in children. Clin. Infect. Dis.41, 35–41 (2005).
  • Lim DJ, Hermansson A, Hellstrom SO et al. Recent advances in otitis media. 3 animal models; anatomy and pathology; pathogenesis; cell biology and genetics. Ann. Otol. Rhinol. Laryngol.194(Suppl.), 31–41 (2005).
  • Murphy TF, Bakaletz LO, Kyd JM, Watson B, Klein D. Vaccines for otitis media: proposals for overcoming obstacles to progress. Vaccine23, 2696–2702 (2005).
  • Fernandez J, Levine OS, Sanchez J et al. Prevention of Haemophilus influenzae type b colonization by vaccination: correlation with serum anti-capsular IgG concentration. J. Infect. Dis.182, 1553–1556 (2000).
  • Heikkinen T, Ruuskanen O, Waris M, Ziegler T, Arola M, Halonen P. Influenza vaccination in the prevention of acute otitis media in children. Am. J. Dis. Child.145, 445–448 (1991).
  • Clements DA, Langdon L, Bland C, Walter E. Influenza A vaccine decreases the incidence of otitis media in 6- to 30- month-old children in day care. Arch. Pediatr. Adolesc. Med.149, 1113–1117 (1995).
  • Belshe RB, Mendelman PM, Treanor J et al. The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine in children. N. Engl. J. Med.338, 1405–1412 (1998).
  • Hoberman A, Greenberg DP, Paradise JL et al. Effectiveness of inactivated influenza vaccine in preventing acute otitis media in young children. A randomized controlled trial. JAMA290, 1608–1616 (2003).
  • Jefferson T, Smith S, Demicheli V, Harnden A, Rivetti A, Di Pietrantonj C. Assessment of the efficacy and effectiveness of influenza vaccines in healthy children: systematic review. Lancet365, 773–780 (2005).
  • McCarthy MW, Kockler DR. Trivalent intranasal influenza vaccine, live. Ann. Pharmacother.38, 2086–2093 (2004).
  • Bergen R, Black S, Shinefield H et al. Safety of cold-adapted live attenuated influenza vaccine in a large cohort of children and adolescents. Pediatr. Infect. Dis. J.23, 138–144 (2004).
  • Marchisio P, Cavagna R, Maspes B et al. Efficacy of intranasal virosomal influenza vaccine in the prevention of recurrent acute otitis media in children. Clinical Infect. Dis.35, 168–174 (2002).
  • Kim HW, Canchola JG, Brandt CD et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol.89, 422–434 (1969).
  • Maggon K, Barik S. New drugs and treatment for respiratory syncytial virus. Rev. Med. Virol.14, 149–168 (2004).
  • Tristram DA, Welliver RC, Mohar CK, Hogerman DA, Hildreth SW, Paradiso P. Immunogenicity and safety of respiratory syncytial virus subunit vaccine in seropositive children 18–36 months old. J. Infect. Dis.167, 191–195 (1993).
  • Paradiso PR, Hildreth SW, Hogerman DA et al. Safety and immunogenicity of a subunit respiratory syncytial virus vaccine in children 24 to 48 months old. Pediatr. Infect. Dis. J.13, 792–798 (1994).
  • Piedra PA, Cron SG, Jewell A et al. Immunogenicity of a new purified fusion protein vaccine to respiratory syncytial virus: a multi-center trial in children with cystic fibrosis. Vaccine21, 2448–2460 (2003).
  • Munoz FM, Piedra PA, Glezen WP. Safety and immunogenicity of respiratory syncytial virus purified fusion protein-2 vaccine in pregnant women. Vaccine21, 3465–3467 (2003).
  • Mejias A, Chavez-Bueno S, Rios AM et al. Comparative effects of two neutralizing anti-respiratory syncytial virus (RSV) monoclonal antibodies in the RSV murine model: time versus potency. Antimicrob. Agents. Chemother.49, 4700–4707 (2005).
  • Karron RA, Wright PF, Crowe JE Jr et al. Evaluation of two live, cold passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees, and in human adults, infants and children. J. Infect. Dis.176, 1428–1436 (1997).
  • Wright PF, Karron RA, Belshe RB et al. Evaluation of a live, cold-passaged, temperature sensitive, respiratory syncytial virus vaccine candidate in infancy. J. Infect. Dis.182, 1331–1342 (2000).
  • Karron RA, Wright PF, Belshe RB et al. Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J. Infect. Dis.191, 1093–1104 (2005).
  • Belshe RB, Newman FK, Anderson EL et al. Evaluation of combined live, attenuated respiratory syncytial virus and parainfluenza 3 virus vaccines in infants and young children. J. Infect. Dis.190, 2096–2103 (2004).
  • Gitiban N, Jurcisek JA, Harris RH et al. Chinchilla and murine models of upper respiratory tract infections with respiratory syncytial virus. J. Virol.79, 6035–6042 (2005).
  • Karron RA, Belshe RB, Wright et al. A live human parainfluenza type 3 virus vaccine is attenuated and immunogenic in young infants. Pediatr. Infect. Dis. J.22, 394–405 (2003).
  • Belshe RB, Newman K, Tsai TF et al. Phase 2 evaluation of parainfluenza type 3 cold passage mutant 45 live attenuated vaccine in healthy children 6–18 months old. J. Infect. Dis.189, 462–470 (2004).
  • Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR46, 1–24 (1997).
  • Hausdorff WP, Bryant J, Paradiso PR, Siber GR. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, Part I. Clin. Infect. Dis.30, 100–121 (2000).
  • Hausdorff WP, Bryant J, Kloek C, Paradiso PR, Siber GR. The contribution of specific pneumococcal serogroups to different disease manifestations: implications for conjugate vaccine formulation and use, Part II. Clin. Infect. Dis.30, 122–140 (2000).
  • Pelton SI, Dagan R, Gaines BM et al. Pneumococcal conjugate vaccines: proceedings from an interactive symposium at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Vaccine21, 1562–1571 (2003).
  • McChlery SM, Scott KJ, Clarke SC. Clonal analysis of invasive pneumococcal isolates in Scotland and coverage of serotypes by the licensed conjugate polysaccharide pneumococcal vaccine: possible implications for UK vaccine policy. Eur. J. Clin. Microbiol. Infect. Dis.24, 262–267 (2005).
  • Nurkka A, Ahman H, Korkeila M, Jantti V, Kayhty H, Eskola J. Serum and salivary anti-capsular antibodies in infants and children immunized with the heptavalent pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J.20, 25–33 (2001).
  • Nurkka A, Lahdenkari M, Palmu AA, Kayhty H; FinOM Study Group. Salivary antibodies induced by the seven-valent PncOMPC conjugate vaccine in the Finnish Otitis Media Vaccine Trial. BMC Infect. Dis.5, 41 (2005).
  • Wuorimaa T, Dagan R, Vakevainen M et al. Avidity and subclasses of IgG after immunization of infants with an 11-valent pneumococcal conjugate vaccine with or without aluminum adjuvant. J. Infect. Dis.184, 1211–1215 (2001).
  • Vidarsson G, Sigurdardottir ST, Gudnason T et al. Isotypes and opsonophagocytosis of pneumococcus type 6B antibodies elicited in infants and adults by an experimental pneumococcus type 6B-tetanus toxoid vaccine. Infect. Immun.66, 2866–2870 (1998).
  • Bogaert D, Veenhoven RH, Ramdin R et al. Pneumococcal conjugate vaccination does not induce a persisting mucosal IgA response in children with recurrent acute otitis media. Vaccine23, 2607–2613 (2005).
  • Korkeila M, Lehtonen H, Ahman H, Leroy O, Eskola J, Kayhty H. Salivary anti-capsular antibodies in infants and children immunised with Streptococcus pneumoniae capsular polysaccharides conjugated to diphtheria or tetanus toxoid. Vaccine1 8, 1218–1226 (2000).
  • Choo S, Zhang Q, Seymour L, Akhtar S, Finn A. Primary and booster salivary antibody responses to a 7-valent pneumococcal conjugate vaccine in infants. J. Infect. Dis.182, 1260–1263 (2000).
  • Nurkka A, Lahdenkari M, Palmu A, Kayhty H; FinOM Study Group. Salivary antibodies induced by the seven-valent PncCRM conjugate vaccine in the Finnish Otitis Media Vaccine Trial. Vaccine23, 298–304 (2004).
  • Dagan R, Givon-Lavi N, Fraser D, Lipsitch M, Siber GR, Kohberger R. Serum serotype-specific pneumococcal anticapsular immunoglobulin IgG concentrations after immunization with a 9-valent conjugate pneumococcal vaccine correlate with nasopharyngeal acquisition of pneumococcus. J. Infect. Dis.192, 367–376 (2005).
  • Dagan R, Melamed R, Muallem M et al. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J. Infect. Dis.174, 1271–1278 (1996).
  • Dagan R, Muallem M, Melamed R, Leroy O, Yagupsky P. Reduction of pneumococcal nasopharyngeal carriage in early infancy after immunization with tetravalent pneumococcal vaccines conjugated to either tetanus toxoid or diphtheria toxoid. Pediatr. Infect. Dis. J.16, 1060–1064 (1997).
  • Black S, Shinefield H, Baxter R et al. Postlicensure surveillance for pneumococcal invasive disease after use of heptavalent pneumococcal conjugate vaccine in Northern California Kaiser Permanente. Pediatr. Infect. Dis. J.23, 485–489 (2004).
  • Fireman B, Black SB, Shinefield HR et al. Impact of the pneumococcal conjugated vaccine on otitis media. Pediatr. Infect. Dis. J.22, 10–16 (2003).
  • Black S, Shinefield H, Fireman B et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J.19, 187–195 (2000).
  • van Kempen MJ, Vermeiren JS, Vaneechoutte M et al. Pneumococcal conjugate vaccination in children with recurrent acute otitis media: a therapeutic alternative? Int. J. Pediatr. Otorhinolaryngol.70, 275–285 (2006).
  • van Heerbeek N, Straetemans M, Wiertsema SP et al. Effect of combined pneumococcal conjugate and polysaccharide vaccination on recurrent otitis media with effusion. Pediatrics117, 603–608 (2006).
  • Dagan R, Sikular-Cohen M, Zamir O, Janco J, Givon-Levi N, Fraser D. Effect of a conjugate pneumococcal vaccine on the occurrence of respiratory disease infections and antibiotic use in day-care center attendees. Pediatr. Infect. Dis. J.20, 951–958 (2001).
  • Dagan R, Kayhty H, Wuorimaa T et al. Tolerability and immunogenicity of an eleven valent mixed carrier Streptococcus pneumoniae capsular polysaccharide-diphtheria toxoid or tetanus protein conjugate vaccine in Finnish and Israeli infants. Pediatr. Infect. Dis. J.23, 91–98 (2004).
  • Puumalainen T, Zeta-Capeding MR, Kayhty H et al. Antibody response to an eleven valent diphtheria- and tetanus-conjugated pneumococcal conjugate vaccine in Filipino infants. Pediatr. Infect. Dis. J.21, 309–314 (2002).
  • Nurkka A, Joensuu, J, Henckaerts I, et al. Immunogenicity and safety of the eleven valent pneumococcal polysaccharide-protein D conjugate vaccine in infants. Pediatr. Infect. Dis. J.11, 1008–1014 (2004).
  • Prymula R, Peeters P, Chrobok V et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: A randomised double-blind efficacy study. Lancet367, 740–748 (2006).
  • Giebink GS, Meier JD, Quartey MK, Liebeler CL, Le CT. Immunogenicity and efficacy of Streptococcus pneumoniae polysaccharide-protein conjugate vaccines against homologous and heterologous serotypes in the chinchilla otitis media model. J. Infect. Dis.173, 119–127 (1996).
  • Jokinen JT, Ahman H, Kilpi TM, Makela PH, Kayhty MH. Concentration of antipneumococcal antibodies as a serological correlate of protection: an application to acute otitis media. J. Infect. Dis.190, 545–550 (2004).
  • Chaithongwongwatthana S, Yamasmit W, Limpongsanurak S et al. Pneumococcal vaccination during pregnancy for preventing infant infection. Cochrane Database Syst. Rev. (2006).
  • Hajek DM, Quartey M, Giebink GS. Maternal pneumococcal conjugate immunization protects infant chinchillas in the pneumococcal otitis media model. Acta Otolaryngol.122, 262–269 (2002).
  • White P, Hermansson A, Svanborg C, Briles D, Prellner K. Effects of active immunization with a pneumococcal surface protein (PspA) and of locally applied antibodies in experimental otitis media. ORL J. Otorhinolaryngol. Relat. Spec.61, 206–211 (1999).
  • Briles DE, Hollingshead SK, King J et al. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis.182, 1694–1701 (2000).
  • Briles DE, Ades E, Paton JC et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun.68, 796–800 (2000).
  • Ogunniyi AD, Folland RL, Briles DE, Hollingshead SK, Paton JC. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun.68, 3028–3033 (2000).
  • Long JP, Tong HH, deMaria TF. Immunization with native or recombinant Streptococcus pneumoniae neuraminidase affords protection in the chinchilla otitis media model. Infect. Imm.72, 4309–4313 (2004).
  • Hamel J, Charland N, Pineau I et al. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect. Imm.72, 2659–2670 (2004).
  • Ueyama T, Gu XX, Tsai CM, Karpas AB, Lim DJ. Identification of common lipooligosaccharide types of isolates from patients with otitis media by monoclonal antibodies against nontypeable Haemophilus influenzae 9274. Clin. Diagn. Lab. Immunol.6, 96–100 (1999).
  • McGhee JL, Radolf JD, Toews GB, Hansen EJ. Effect of primary immunization on pulmonary clearance of nontypeable Haemophilus influenzae. Am. J. Respir. Cell. Mol. Biol.1, 201–210 (1989).
  • Rahman MM, Gu XX, Tsai CM, Kolli VS, Carlison RW. The structural heterogeneity of the lipooligosaccharide (LOS) expressed by pathogenic nontypeable Haemophilus influenzae strain NTHi 9274. Glycobiology9, 1371–1380 (1999).
  • Gu XX, Tsai CM, Ueyama T, Barenkamp SJ, Robbins JB, Lim DJ. Synthesis, characterization and immunological properties of detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins. Infect. Immun.64, 4047–4053 (1996).
  • Gu XX, Sun J, Jin S et al. Detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins confers protection against otitis media in chinchillas. Infect. Immun.65, 4488–4493 (1997).
  • Hirano T, Hou Y, Jia X, Gu XX. Intranasal immunization with a lipooligosaccharide-based conjugate vaccine from nontypeable Haemophilus influenzae enhances bacterial clearance in mouse nasopharynx. FEMS Immunol. Med. Microbiol.35, 1–10 (2003)
  • Gu XX, Rudy SF, Chu C et al. Phase I study of a lipooligosaccharide-based conjugate vaccine against nontypeable Haemophilus influenzae. Vaccine21, 2107–2114 (2003).
  • Kyd JM, Dunkley ML, Cripps AW. Enhanced respiratory clearance of nontypeable Haemophilus influenzae following mucosal immunization with P6 in a rat model. Infect. Immun.63, 2931–2940 (1995).
  • McMahon M, Murphy TF, Kyd J, Thanavala Y. Role of an immunodominant T cell epitope of the P6 protein of nontypeable Haemophilus influenzae in murine protective immunity. Vaccine23, 3590–3596 (2005).
  • DeMaria TF, Murwin DM, Leake ER. Immunization with outer membrane P6 from nontypeable Haemophilus influenzae induces bactericidal antibody and affords protection in the chinchilla model of otitis media. Infect. Immun.64, 5187–5192 (1996).
  • Sabirov A, Kodama S, Hirano T, Suzuki M, Mogi G. Intranasal immunization enhances clearance of nontypeable Haemophilus influenzae and reduces stimulation of tumor necrosis factor α production in the murine model of otitis media. Infect. Immun.69, 2964–2971 (2001).
  • Bertot GM, Becker PD, Guzman CA, Grinstein S. Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers protection against otitis media and lung infection by nontypeable Haemophilus influenzae. J. Infect. Dis.189, 1304–1312 (2004).
  • Sabirov A, Kodama S, Sabirova N, Mogi G, Suzuki M. Intranasal immunization with outer membrane protein P6 and cholera toxin induces specific sinus mucosal immunity and enhances sinus clearance of nontypeable Haemophilus influenzae. Vaccine22, 3112–3121 (2004).
  • Yamauchi K, Hotomi M, Billal DS, Suzumoto M, Yamanaka N. Maternal intranasal immunization with outer membrane protein P6 maintains specific antibody level of derived offspring. Vaccine (In Press) (2006).
  • Kodama S, Suenaga S, Hirano T, Suzuki M, Mogi G. Induction of specific immunoglobulin A and Th2 immune responses to P6 outer membrane protein of nontypeable Haemophilus influenzae in middle ear mucosa by intranasal immunization. Infect. Immun.68, 2294–2300 (2000).
  • Kyd JM, Cripps AW, Novotny LA, Bakaletz LO. Efficacy of the 26-dalton outer membrane protein and two P5 fimbrin-derived immunogens to induce clearance of nontypeable Haemophilus influenzae from the rat middle ear and lungs as well as from the chinchilla middle ear and nasopharynx. Infect. Immun.71, 4691–4699 (2003).
  • Kyd JM, Cripps AW. Potential of a novel protein, OMP 26, from nontypeable Haemophilus influenzae to enhance pulmonary clearance in a rat model. Infect. Immun.66, 2272–2278 (1998).
  • Bakaletz LO, Kennedy BJ, Novotny LA, Duquesne G, Cohen J, Lobet Y. Protection against development of otitis media induced by nontypeable Haemophilus influenzae by both active and passive immunization in a chinchilla model of virus-bacterium superinfection. Infect. Immun.67, 2746–2762 (1999).
  • Neary JM, Yi K, Karalus RJ, Murphy TF. Antibodies to loop 6 of the P2 porin protein of nontypeable Haemophilus influenzae are bactericidal against multiple strains. Infect. Immun.69, 773–778 (2001).
  • Loosmore SM, Yang Y, Oomen R, Shortreed JM, Coleman DC, Klein MH. The Haemophilus influenzae HtrA protein is a protective antigen. Infect. Immun.66, 899–906 (1998).
  • Winter LE, Barenkamp S. Human antibodies specific for high-molecular-weight adhesion proteins of Nontypeable Haemophilus influenzae mediate opsonophagocytic activity. Infect. Immun.71, 6884–6891 (2003).
  • Cutter D, Mason KW, Howell AP, Fink DL, Green BA, St.Geme III JW. Immunization with Haemophilus influenzae Hap adhesin protects against nasopharyngeal colonization in experimental mice. J. Infect. Dis.186, 1115–1121 (2002).
  • Liu D, Mason KW, Mastri M et al. The C-terminal fragment of the internal 110-kilodalton passenger domain of the Hap protein of nontypeable Haemophilus influenzae is a potential vaccine candidate. Infect. Immun.72, 6961–6968 (2004).
  • Reilly TJ, Smith AL. Purification and characterization of a recombinant Haemophilus influenzae outer membrane phosphomonoesterase (P4). Protein Expr. Purif.17, 401–409 (1999).
  • Green BA, Vazquez ME, Zlotnick GW et al. Evaluation of mixtures of purified Haemophilus influenzae outer membrane proteins in protection against challenge with nontypeable H. influenzae in the chinchilla otitis media model. Infect. Immun.61, 1950–1957 (1993).
  • Hotomi M, Ikeda Y, Suzumoto K et al. A recombinant P4 protein of Haemophilus influenzae induces responses biologically active against nasopharyngeal colonization after intranasal immunization. Vaccine23, 1294–1300 (2005).
  • Green BA, Baranyi E, Reilly TJ, Smith AL, Zlotnick GW. Certain site-directed, nonenzymatically active mutants of the Haemophilus influenzae P4 lipoprotein are able to elicit bactericidal antibody. Infect. Immun.73, 4454–4457 (2005).
  • Chen D, Barniak V, Vandermeid KR, McMichael JC. The levels and bactericidal capacity of antibodies directed against the UspA1 and UspA2 outer membrane proteins of Moraxella (Branhamella) catarrhalis in adults and children. Infect. Immun.67, 1310–1316 (1999).
  • Yang YP, Myers LE, McGuinness U et al. The major outer membrane protein, CD, extracted from Moraxella (Branhamella) catarrhalis is a potential vaccine antigen that induces bactericidal antibodies. FEMS Immunol. Med. Microbiol.17, 187–199 (1997).
  • Helminen ME, Maciver I, Latimer JL, Cope LD, McCracken GHJ, Hansen EJ. A major outer membrane protein of Moraxella catarrhalis is a target for antibodies that enhance pulmonary clearance of the pathogen in an animal model. Infect. Immun.61, 2003–2010 (1993).
  • Murphy TF, Kyd JM, John A, Kirkham C, Cripps AW. Enhancement of pulmonary clearance of Moraxella (Branhamella) catarrhalis following immunization with outer membrane protein CD in a mouse model. J. Infect. Dis.178, 1667–1675 (1998).
  • Yu S, Gu XX. Synthesis and characterization of lipooligosaccharide-based conjugate vaccines for serotype B Moraxella catarrhalis. Infect. Immun.73, 2790–2796 (2005).
  • Gu XX, Chen J, Barenkamp JB et al. Synthesis and characterization of lipooligosaccharide-based conjugates as vaccine candidates for Moraxella (Branhamella) catarrhalis. Infect. Immun.66, 1891–1897 (1998).
  • Jiao X, Takashi H, Hou Y, Gu XX. Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect. Immun.70, 5982–5989 (2002).
  • Pai VB, Heyneman CA, Erramouspe J. Conjugated heptavalent pneumococcal vaccine. Ann. Pharmacotheraphy36, 1403–1413 (2002).
  • Jodar L, Buttler J, Carlone G et al. Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations. Vaccine21, 3265–3272 (2003).
  • Lee LH, Frasch CE, Falk LA, Klein DL, Deal CD. Correlates of immunity for pneumococcal conjugate vaccines. Vaccine21, 2190–2196 (2003).

Websites

  • Study of Streptococcus pneumoniae in nose and throats of infants with acute otitis media. ClinicalTrials.gov identifier NCT00195611. http://clinicaltrials.gov/ct/gui/show/NCT00195611
  • The Jordan Report. 20th Anniversary. Accelerated Development of Vaccines 2002. www.niaid.nih.gov/dmid/vaccines/ jordan20/
  • MEDI-524 (Numax-TM) for prevention of respiratory syncytial virus (RSV) disease among native American Indian infants in the southwestern United States. www.clinical trials.gov/show/ NCT00121108
  • Study to evaluate the safety, tolerability, and immunogenicity of motavizumab (MEDI-524) and palivizumab when administered in the same respiratory syncytial virus season. www.clinicaltrials.gov/show/ NCT00316264
  • Neonatal immunization with pneumococcal conjugate vaccine in Papua New Guinea. ClinicalTrials.gov identifier NCT00219401. http://clinicaltrials.gov/ct/gui/show/NCT00219401
  • Study evaluating pneumococcal vaccine in healthy infants. ClinicalTrials.gov identifier NCT00205803. http://clinicaltrials.gov/ct/gui/show/NCT00205803

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.