164
Views
43
CrossRef citations to date
0
Altmetric
Review

Listeria monocytogenes as a vector for tumor-associated antigens for cancer immunotherapy

&
Pages 541-552 | Published online: 09 Jan 2014

References

  • Paterson Y, Maciag PC. Listeria-based vaccines for cancer treatment. Curr. Opin. Mol. Ther.7, 454–460 (2005).
  • McKenzie IF, Apostolopoulos V, Plebanski M, Pietersz GA, Loveland BE. Aspects of cancer immunotherapy. Immunol. Cell Biol.81, 79–85 (2003).
  • Feng CG, Jankovic D, Kullberg M et al. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J. Immunol.174, 4185–4192 (2005).
  • Cowley SC, Hamilton E, Frelinger JA, Su J, Forman J, Elkins KL. CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo. J. Exp. Med.202, 309–319 (2005).
  • Cheadle EJ, O'Donnell D, Selby PJ, Jackson AM. Closely related mycobacterial strains demonstrate contrasting levels of efficacy as antitumor vaccines and are processed for major histocompatibility complex class I presentation by multiple routes in dendritic cells. Infect. Immun.73, 784–794 (2005).
  • Chung MA, Luo Y, O'Donnell M et al. Development and preclinical evaluation of a Bacillus Calmette–Guerin-MUC1-based novel breast cancer Vaccine Cancer Res.63, 1280–1287 (2003).
  • Baud D, Ponci F, Bobst M, De Grandi P, Nardelli-Haefliger D. Improved efficiency of a Salmonella-based vaccine against human papillomavirus type 16 virus-like particles achieved by using a codon-optimized version of L1. J. Virol.78, 12901–12909 (2004).
  • Medina E, Guzman CA, Staendner LH, Colombo MP, Paglia P. Salmonella vaccine carrier strains: effective delivery system to trigger anti-tumor immunity by oral route. Eur. J. Immunol.29, 693–699 (1999).
  • Weth R, Christ O, Stevanovic S, Zoller M. Gene delivery by attenuatedSalmonella typhimurium: comparing the efficacy of helper versus cytotoxic T cell priming in tumor vaccination. Cancer Gene Ther.8, 599–611 (2001).
  • Avogadri F, Martinoli C, Petrovska L et al. Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res.65, 3920–3927 (2005).
  • Wagner M, Melzner D, Bago Z et al. Outbreak of clinical listeriosis in sheep: evaluation from possible contamination routes from feed to raw produce and humans. J. Vet. Med. B. Infect. Dis. Vet. Public Health.52, 278–283 (2005).
  • Dussurget O, Pizarro-Cerda J, Cossart P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol.58, 587–610 (2004).
  • Wong KK, Bouwer HG, Freitag NE. Evidence implicating the 5' untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell. Microbiol.6, 155–166 (2004).
  • Rafelski SM and Theriot JA. Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility. Biophys. J.89, 2146–2158 (2005).
  • Chen M, Tabaczewski P, Truscott SM, Van Kaer L, Stroynowski I. Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J. Immunol.175, 1047–1055 (2005).
  • Paterson Y, Johnson RS. Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens. Expert. Rev. Vaccines3, S119–S134 (2004).
  • Mackaness GB. Cellular resistance to infection. J. Exp. Med.116, 381–406 (1962).
  • Edelson BT, Unanue ER. Intracellular antibody neutralizes Listeria growth. Immunity14, 503–512 (2001).
  • Edelson BT, Cossart P, Unanue ER. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol.163, 4087–4090 (1999).
  • Kursar M, Hopken UE, Koch M et al. Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. J. Exp. Med.201, 1447–1457 (2005).
  • Kursar M, Mittrucker HW, Koch M, Kohler A, Herma M, Kaufmann SH. Protective T cell response against intracellular pathogens in the absence of Toll-like receptor signaling via myeloid differentiation factor 88. Int. Immunol.16, 415–421 (2004).
  • Ladel CH, Flesch IE, Arnoldi J, Kaufmann SH. Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection. J. Immunol.115, 3116–3122 (1994).
  • Kaufmann SH. Immunity to intracellular bacteria. Ann. Rev. Immunol.11, 129–163 (1993).
  • Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity19, 59–70 (2003).
  • Berg RE, Crossley E, Murray S, Forman J. Relative contributions of NK and CD8 T cells to IFN-γ mediated innate immune protection against Listeria monocytogenes . J. Immunol.175, 1751–1757 (2005).
  • Berg RE, Cordes CJ, Forman J. Contribution of CD8+ T cells to innate immunity: IFN-γ secretion induced by IL-12 and IL-18. Eur. J. Immunol.32, 2807–2816 (2002).
  • Thale C and Kiderlen AF. Sources of interferon-γ (IFN-γ) in early immune response to Listeria monocytogenes. Immunobiology210, 673–683 (2005).
  • Harty JT, Bevan MJ. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity3, 109–117 (1995).
  • Haring JS, Badovinac VP, Olson MR, Varga SM, Harty JT. In vivo generation of pathogen-specific Th1 cells in the absence of the IFN-γ receptor. J. Immunol.175, 3117–3122 (2005).
  • Barry RA, Bouwer HG, Clark TR, Cornell KA, Hinrichs DJ. Protection of interferon-γ knockout mice against Listeria monocytogenes challenge following intramuscular immunization with DNA vaccines encoding listeriolysin O. Vaccine21, 2122–2132 (2003).
  • Badovinac VP, Harty JT. Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-γ. J. Immunol.164, 6444–6452 (2000).
  • White DW, Harty JT. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. J. Immunol.160, 898–905 (1998).
  • Bruhn KW, Craft N, Nguyen BD, Yip J, Miller JF. Characterization of anti-self CD8 T-cell responses stimulated by recombinant Listeria monocytogenes expressing the melanoma antigen TRP-2. Vaccine23, 4263–4272 (2005).
  • Starks H, Bruhn KW, Shen H et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol.173, 420–427 (2004).
  • Singh R, Dominiecki ME, Jaffee EM, Paterson Y. Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J. Immunol.175, 3663–3673 (2005).
  • Peters C, Peng X, Douven D, Pan ZK, Paterson Y. The induction of HIV Gag-specific CD8+ T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant Listeria monocytogenes HIV Gag. J. Immunol.170, 5176–5187 (2003).
  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol.167, 6471–6479 (2001).
  • Mata M, Yao ZJ, Zubair A, Syres K, Paterson Y. Evaluation of a recombinant Listeria monocytogenes expressing an HIV protein that protects mice against viral challenge. Vaccine19, 1435–1445 (2001).
  • Weiskirch LM and Paterson Y. Listeria monocytogenes : a potent vaccine vector for neoplastic and infectious disease. Immunol. Rev.158, 159–169 (1997).
  • Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat. Med.1, 471–477 (1995).
  • Pan ZK, Ikonomidis G, Pardoll D, Paterson Y. Regression of established tumors in mice mediated by the oral administration of a recombinant Listeria monocytogenesVaccine Cancer Res.55, 4776–4779 (1995).
  • Shen H, Slifka MK, Matloubian M, Jensen ER, Ahmed R, Miller JF. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl Acad. Sci. USA.92, 3987–3991 (1995).
  • Jensen ER, Shen H, Wettstein FO, Ahmed R, Miller JF. Recombinant Listeria monocytogenes as a live vaccine vehicle and a probe for studying cell-mediated immunity. Immunol. Rev.158, 147–157 (1997).
  • Jensen ER, Selvakumar R, Shen H, Ahmed R, Wettstein FO, Miller JF. Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J. Virol.71, 8467–8474 (1997).
  • Pan ZK, Weiskirch LM, Paterson Y. Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes.Vaccine Cancer Res.59, 5264–5269 (1999).
  • Verch T, Pan ZK, Paterson Y. Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines. Infect. Immun.72, 6418–6425 (2004).
  • Pilgrim S, Stritzker J, Schoen C et al. Bactofection of mammalian cells by Listeria monocytogenes : improvement and mechanism of DNA delivery. Gene Ther.10, 2036–2045 (2003).
  • Lin KY, Guarnieri FG, Staveley-O’Carroll KF et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res.56, 21–26 (1996).
  • Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res.64, 8821–8825 (2004).
  • Hussain SF, Paterson Y. CD4+CD25+ regulatory T cells that secrete TGFβ and IL-10 are preferentially induced by a vaccine vector. J. Immunother.27, 339–346 (2004).
  • Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y. Regression of HPV-positive tumors treated with a new Listeria monocytogenes.Vaccine Arch. Otolaryngol. Head Neck Surg.130, 92–97 (2004).
  • Schnupf P, Portnoy DA, Decatur AL. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell. Microbiol.8, 353–364 (2006).
  • Decatur AL, Portnoy DA. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science290, 992–995 (2000).
  • Lin CW, Lee JY, Tsao YP, Shen CP, Lai HC, Chen SL. Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int. J. Cancer.102, 629–637 (2002).
  • Yu Z, Theoret MR, Touloukian CE et al. Poor immunogenicity of a self/tumor antigen derives from peptide-MHC-I instability and is independent of tolerance. J. Clin. Invest.114, 551–559 (2004).
  • Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol.6, 1219–1227 (2005).
  • Palermo B, Campanelli R, Mantovani S et al. Diverse expansion potential and heterogeneous avidity in tumor-associated antigen-specific T lymphocytes from primary melanoma patients. Eur. J. Immunol.31, 412–420 (2001).
  • Palermo B, Garbelli S, Mantovani S et al. Qualitative difference between the cytotoxic T lymphocyte responses to melanocyte antigens in melanoma and vitiligo. Eur. J. Immunol.35, 3153–3162 (2005).
  • Schwartz RH. T cell anergy. Ann. Rev. Immunol.21, 305–334 (2003).
  • Jaffee EM. Immunotherapy of cancer. Ann. NY Acad. Sci.886, 67–72 (1999).
  • Disis ML and Cheever MA. HER-2/neu protein: a target for antigen-specific immunotherapy of human cancer. Adv. Cancer Res.71, 343–371 (1997).
  • Boggio K, Nicoletti G, Di Carlo E et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med.188, 589–596 (1998).
  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA.89, 10578–10582 (1992).
  • Gallo P, Dharmapuri S, Nuzzo M et al. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int. J. Cancer.113, 67–77 (2000).
  • Reilly RT, Gottlieb MB, Ercolini AM et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res.60, 3569–3576 (2000).
  • Ercolini AM, Machiels JP, Chen YC et al. Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J. Immunol.170, 4273–4280 (2003).
  • Singh R, Paterspon Y. Vaccination strategy determines the emergence and dominance of CD8+ T-cell epitopes in a FVB/N rat HER-2/neu mouse model of breast cancer. Cancer Res.60, 7748–7757 (2006).
  • Slansky JE, Rattis FM, Boyd LF et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity13, 529–538 (2000).
  • Brockstedt DG, Giedlin MA, Leong ML et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl Acad. Sci. USA.101, 13832–13837 (2004).
  • Brockstedt DG, Bahjat KS, Giedlin MA et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat. Med.11, 853–860 (2005).
  • Prins RM, Bruhn KW, Craft N et al. Central nervous system tumor immunity generated by a recombinant Listeria monocytogenes vaccine targeting tyrosinase related protein-2 and real-time imaging of intracranial tumor burden. Neurosurgery58, 169–178 (2006).
  • Arnold J, de Boer EC, O’Donnell MA, Bohle A, Brandau S. Immunotherapy of experimental bladder cancer with recombinant BCG expressing interferon-γ. J. Immunother.27, 116–123 (2004).
  • Bekierkunst A, Goren MB. Immunotherapy of guinea pig line 10 hepatoma with nonliving BCG cells in aqueous medium. Infect. Immun.24, 817–820 (1979).
  • Granger DL, Brehmer W, Yamamoto K, Ribi E. Cutaneous granulomatous response to BCG cell walls with reference to cancer immunotherapy. Infect. Immun.13, 543–553 (1976).
  • Yoshimura K, Jain A, Allen HE et al. Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res.66, 1096–1104 (2006).
  • Calsini P, Scapicchi G, Gazzarini O et al. Immunotherapy of bladder cancer with intralesional injection with BCG. J. Exp. Pathol.3, 579–586 (1987).
  • Wada Y, Gotoh A, Shirakawa T, Hamada K, Kamidono S. Gene therapy for bladder cancer using adenoviral vector. Mol. Urol.5, 47–52 (2001).
  • Lecuit M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin. Microbiol. Infect.11, 430–436 (2005).

Website

  • National Cancer Institute – Surveillance Epidemiology and End Results http://seer.cancer.gov/statfacts/html/ all.html
  • Centers for Disease Control and Prevention – Disease Listing – CDC Bacterial, Mycotic Diseases www.cdc.gov/ncidod/dbmd/diseaseinfo/default.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.