139
Views
21
CrossRef citations to date
0
Altmetric
Review

The potential role of fowlpox virus in rational vaccine design

, &
Pages 565-577 | Published online: 09 Jan 2014

References

  • Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination and safety. Proc. Natl Acad. Sci. USA93(21), 11341–11348 (1996).
  • Rappuoli R. From Pasteur to genomics: progress and challenges in infectious diseases. Nat. Med.10(11), 1177–1185 (2004).
  • Pulendran B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev.199, 227–250 (2004).
  • Doeuk DC, Kwong PD, Nabel GJ. The rational design of an AIDS vaccine. Cell124, 677–681 (2005).
  • Moss B. Poxviridae and their replication Fields BN, Kea DM (Eds), Raven Press, Ltd, NY, USA (1990).
  • Smith SA, Kotwal GJ. Immune responses to poxvirus infections in various animals. Crit. Rev. Microbiol.28(3), 149–185 (2002).
  • Boulanger D, Smith T, Skinner M. Morphogenesis and release of fowlpox virus. J. Gen. Virol.81(3), 675–687 (2000).
  • Fenner F. Adventures with poxviruses of vertebrates. FEMS Microbiol. Rev.24(2), 123–133 (2000).
  • Afonso CL, Tulman ER, Delhon G et al. Genome of crocodilepox virus. J. Virol.80(10), 4978–4991 (2006).
  • Boulanger D, Green P, Jones B et al. Identification and characterisation of three immunodominant structural proteins of fowlpox virus. J. Virol.76(19), 9844–9855 (2002).
  • Afonso CL, Tulman ER, Lu Z et al. The genome of fowlpox virus. J. Virol.74(8), 3815–3831 (2000).
  • Seet BT, Johnston JB, Brunetti CR et al. Poxviruses and immune evasion. Ann. Rev. Immunol.21, 377–423 (2003).
  • Taylor J, Weinburg R, Languet B et al. Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine6(6), 497–503 (1988).
  • Singh P, Schnitzlein WM, Tripathy DN. Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability. J. Virol.77(10), 5855–5862 (2003).
  • Singh P, Kim T-J, Tripathy DN. Re-emerging fowlpox: evaluation of isolates from vaccinated flocks. Avian Pathol.29, 449–455 (2000).
  • Hertig C, Coupar BE, Gould AR et al. Field and vaccine strains of fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virology235(2), 367–376 (1997).
  • Laidlaw SM, Skinner MA. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of fowlpox virus, with those of virulent American and European viruses. J. Gen. Virol.85(Pt 2), 305–322 (2004).
  • Webster DP, Dunachie S, McConkey S et al. Safety of recombinant fowlpox strain FP9 and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine24(15), 3026–3034 (2006).
  • Skinner MA, Laidlaw SM, Eldaghayes I et al. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev. Vaccines4(1), 63–76 (2005).
  • Brown M, Davies DH, Skinner MA et al. Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors. Cancer Gene Ther.6(3), 238–245 (1999).
  • McFadden G. Poxvirus tropism. Nat. Rev. Microbiol.3(3), 201–213 (2005).
  • Kwak H, Horig H, Kaufman HL. Poxviruses as vectors for cancer immunotherapy. Curr. Opin. Drug Discov. Develop.6(2), 161–168 (2003).
  • Somogyi P, Fraser J, Skinner MA. Fowlpox virus host range restriction: gene expression, DNA replication and morphogenesis in nonpermissive mammalian cells. Virology197(1), 439–444 (1993).
  • Chahroudi A, Chavan R, Kozyr N et al. Vaccinia virus tropism for primary hematolymphoid cells is determined by restricted expression of a unique virus receptor. J. Virol.79(16), 10397–10407 (2005).
  • Schneider-Schaulies J. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol.81(Pt 6), 1413–1429 (2000).
  • Johnston JB, McFadden G. Poxvirus immunomodulatory strategies: current perspectives. J. Virol.77(11), 6093–6100 (2003).
  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann. Rev. Biochem.68, 383–424 (1999).
  • Thornberry NA, Bull HG, Calaycay JR et al. A novel heterodimeric cysteine protease is required for interleukin-1 β processing in monocytes. Nature356(6372), 768–774 (1992).
  • Zhou Q, Snipas S, Orth K et al. Target protease specificity of the viral serpin crmA. J. Biol. Chem.272(12), 7797–7800 (1997).
  • Turner PC, Moyer RW. Control of apoptosis by poxviruses. Semin. Virol.8(6), 453–469 (1998).
  • Alcami A, Symons J, Khanna A et al. Poxviruses: capturing cytokines and chemokines. Semin. Virol.8(5), 419–427 (1998).
  • Puehler F, Schwartz H, Waidners B et al. An interferon-γ binding protein of novel structure encoded by the fowlpox virus. J. Biol. Chem.278(9), 6905–6911 (2003).
  • Mossman K, Upton C, Buller RML et al. Specis specificity of ectromelia virus and vaccinia virus interferon-γ binding proteins. Virology208(2), 762–769 (1995).
  • Gherardi MM, Ramirez JC, Esteban M. IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. J. Gen. Virol.84(8), 1961–1972 (2003).
  • Shtrichman R, Samuel CE. The role of γ interferon in antimicrobial immunity. Curr. Opin. Microbiol.4(3), 251–259 (2001).
  • Wang F, Ma Y, Barrett JW et al. Disruption of erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat. Immunol.5(12), 1266–1274 (2004).
  • Zinkernagel RM, Hengartner H. On immunity against infections and vaccines: credo 2004. Scand. J. Immunol.60(1–2), 9–13 (2004).
  • Hutchings CL, Gilbert SC, Hill AV et al. Novel protein and poxvirus-based vaccine combinations for simultaneous induction of humoral and cell-mediated immunity. J. Immunol.175(1), 599–606 (2005).
  • Ramshaw IA, Ramsay AJ. The prime–boost strategy: exciting prospects for improved vaccination. Immunol. Today21(4), 163–165 (2000).
  • Polo JM, Dubensky TW Jr. Virus-based vectors for human vaccine applications. Drug Discov. Today7(13), 719–727 (2002).
  • Smith CL, Mirza F, Pasquetto V et al. Immunodominance of poxviral-specific CTL in a human trial of recombinant-modified vaccinia ankara. J. Immunol.175(12), 8431–8437 (2005).
  • Harrington LE, Most R Rv, Whitton JL et al. Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J. Virol.76(7), 3329–3337 (2002).
  • Ockenhouse CF, Sun PF, Lanar DE et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-PF7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J. Infect. Dis.177(6), 1664–1673 (1998).
  • Drexler I, Staib C, Kastenmuller W et al. Identification of vaccinia virus epitope-specific HLA-a*0201-restricted T cells and comparative analysis of smallpox vaccines. Proc. Natl Acad. Sci. USA100(1), 217–222 (2003).
  • Tscharke DC, Karupiah G, Zhou J et al. Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J. Exp. Med.201(1), 95–104 (2005).
  • Oseroff C, Kos F, Bui HH et al. HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc. Natl Acad. Sci. USA102(39), 13980–13985 (2005).
  • Slifka MK. The future of smallpox vaccination: is MVA the key? Med. Immunol.4(1), 2 (2005).
  • Souza AP, Haut L, Reyes-Sandoval A et al. Recombinant viruses as vaccines against viral diseases. Braz. J. Med. Biol. Res.38(4), 509–522 (2005).
  • Paoletti E. Applications of pox virus vectors to vaccination: an update. Proc. Natl Acad. Sci. USA93(21), 11349–11353 (1996).
  • Coupar BEH, Teo T, Boyle DB. Restriction endonuclease mapping of the fowlpox virus genome. Virology179(1), 159–167 (1990).
  • Robinson HL, Montefiori DC, Johnson RP et al. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nat. Med.5(5), 526–534 (1999).
  • Kent SJ, Dale CJ, Ranasinghe C et al. Mucosally-administered human-simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3. Vaccine23(42), 5009–5021 (2005).
  • Letvin NL. Progress toward an HIV vaccine. Ann. Rev. Med.56, 213–223 (2005).
  • Vazquez Blomquist D, Green P, Laidlaw SM et al. Induction of a strong HIV-specific CD8+ T cell response in mice using a fowlpox virus vector expressing an HIV-1 multi-CTL-epitope polypeptide. Viral Immunol.15(2), 337–356 (2002).
  • Dale CJ, Zhao A, Jones SL et al. Induction of HIV-1-specific T-helper responses and type 1 cytokine secretion following therapeutic vaccination of macaques with a recombinant fowlpoxvirus co-expressing interferon-γ. J. Med. Primatol.29(3–4), 240–247 (2000).
  • Dale CJ, De Rose R, Stratov I et al. Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. J. Virol.78(24), 13819–13828 (2004).
  • Kent SJ Zhao A, Best SJ et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol.72(12), 10180–10188 (1998).
  • Moorthy VS, Imoukhuede EB, Keating S et al. Phase 1 evaluation of 3 highly immunogenic prime–boost regimens, including a 12-month reboosting vaccination, for malaria vaccination in Gambian men. J. Infect. Dis.189(12), 2213–2219 (2004).
  • Webster DP, Dunachie S, Vuola JM et al. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl Acad. Sci. USA102(13), 4836–4841 (2005).
  • Yang S, Hodge JW, Grosenbach DW et al. Vaccines with enhanced costimulation maintain high avidity memory CTL. J. Immunol.175(6), 3715–3723 (2005).
  • Marshall JL, Gulley JL, Arlen PM et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J. Clin. Oncol.23(4), 720–731 (2005).
  • Dipaola R, Plante M, Kaufman H et al. A Phase I trial of pox PSA vaccines (PROSTVAC(r)-VF) with B7–1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOMtrade mark) in patients with prostate cancer. J. Transl. Med.4, 1 (2006).
  • Kaufman HL, Wang W, Manola J et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern cooperative oncology group. J. Clin. Oncol.22(11), 2122–2132 (2004).
  • Carroll MW, Moss B. Poxviruses as expression vectors. Curr. Opin. Biotechnol.8(5), 573–577 (1997).
  • Taylor J, Paoletti E. Fowlpox virus as a vector in non-avian species. Vaccine6(6), 466–468 (1988).
  • Bembridge GP, Lopez JA, Cook R et al. Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or γ interferon. J. Virol.72(5), 4080–4087 (1998).
  • Zhu M, Terasawa H, Gulley J et al. Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells. Cancer Res.61(9), 3725–3734 (2001).
  • Triozzi PL, Aldrich W, Allen KO et al. Antitumor activity of the intratumoral injection of fowlpox vectors expressing a triad of costimulatory molecules and granulocyte/macrophage colony stimulating factor in mesothelioma. Int. J. Cancer.113(3), 406–414 (2005).
  • Grosenbach DW, Barrientos JC, Schlom J et al. Synergy of vaccine strategies to amplify antigen-sepcific immune responses and antitumour effects. Cancer Res.61(11), 4497–4505 (2001).
  • Hodge JW, Sabzevari H, Yafal AG et al. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res.59(22), 5800–5807 (1999).
  • Hodge JW, Rad AN, Grosenbach DW et al. Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules. J. Natl Cancer Inst.92(15), 1228–1239 (2000).
  • Marshall E. Drug trials. Violent reaction to monoclonal antibody therapy remains a mystery. Science311(5768), 1688–1689 (2006).
  • Evans EJ, Esnouf RM, Manso-Sancho R et al. Crystal structure of a soluble CD28-FAb complex. Nat. Immunol.6(3), 271–279 (2005).
  • Hopkin M. Can super-antibody drugs be tamed? Nature440, 855–856 (2006).
  • Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Ann. Rev. Immunol.15, 297–322 (1997).
  • Reali E, Canter D, Zeytin H et al. Comparative studies of avipox-GM-CSF versus recombinant GM-CSF protein as immune adjuvants with different vaccine platforms. Vaccine23(22), 2909–2921 (2005).
  • Dale CJ, De Rose R, Wilson KM et al. Evaluation in macaques of HIV-1 DNA vaccines containing primate CpG motifs and fowlpoxvirus vaccines co-expressing IFN-γ or IL-12. Vaccine23(2), 188–197 (2004).
  • Jackson RJ, Ramsay AJ, Christensen CD et al. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol.75(3), 1205–1210 (2001).
  • Mullbacher A, Lobigs M. Creation of killer poxvirus could have been predicted. J. Virol.75(18), 8353–8355 (2001).
  • Aung S, Graham B. IL-4 diminishes perforin-mediated and increases fas ligand-mediated cytotoxicity in vivo.J. Immunol.164(7), 3487–3493 (2000).
  • Estcourt MJ, Ramsay AJ, Brooks A et al. Prime–boost immunisation generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. Int. Immunol.14(1), 31–37 (2002).
  • Anderson RJ, Hannan CM, Gilbert SC et al. Enhanced CD8+ T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus. J. Immunol.172(5), 3094–3100 (2004).
  • Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54(Pt 1), 1–13 (1989).
  • Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell124(4), 849–863 (2006).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell124(4), 783–801 (2006).
  • Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science300(5625), 1524–1525 (2003).
  • Germain RN. An innately interesting decade of research in immunology. Nat. Med.10(12), 1307–1320 (2004).
  • Napolitani G, Rinaldi A, Bertoni F et al. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol.6(8), 769–776 (2005).
  • Wille-Reece U, Flynn BJ, Lore K et al. HIV gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA102(42), 15190–15194 (2005).
  • Wille-Reece U, Flynn BJ, Lore K et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime–boost immunization in nonhuman primates. J. Exp. Med.203(5), 1249–1258 (2006).
  • Bowie A, Kiss-Toth E, Symons JA et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling. Proc. Natl Acad. Sci. USA97(18), 10162–10167 (2000).
  • Harte MT, Haga IR, Maloney G et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med.197(3), 343–351 (2003).
  • Pincus S, Tartaglia J, Paoletti E. Poxvirus-based vectors as vaccine candidates. Biologicals23(2), 159–164 (1995).
  • Lanzavecchia A. From antigen presentation to T-cell activation. Res. Immunol.149(7–8), 626 (1998).
  • Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Ann. Rev. Immunol.19, 47–64 (2001).
  • Ploegh HL. Immunology. Nothing 'gainst time's scythe can make defense. Science304(5675), 1262–1263 (2004).
  • Heath WR, Belz GT, Behrens GM et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev.199, 9–26 (2004).
  • Neijssen J, Herberts C, Drijfhout JW et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature434(7029), 83–88 (2005).
  • Heath WR, Carbone FR. Coupling and cross-presentation. Nature434(7029), 27–28 (2005).
  • Zinkernagel RM. On cross-priming of MHC class I-specific CTL: rule or exception? Eur. J. Immunol.32(9), 2385–2392 (2002).
  • Hickman-Miller HD, Yewdell JW. Youth has its privileges: Maturation inhibits DC cross-priming. Nat. Immunol.7(2), 125–126 (2006).
  • Wilson NS, Behrens GM, Lundie RJ et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat. Immunol.7(2), 165–172 (2006).
  • Sigal LJ, Crotty S, Andino R et al. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature398(6722), 77–80 (1999).
  • Shen X, Wong SB, Buck CB et al. Direct priming and cross-priming contribute differentially to the induction of CD8+ CTL following exposure to vaccinia virus via different routes. J. Immunol.169(8), 4222–4229 (2002).
  • Norbury CC, Malide D, Gibbs JS et al. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo.Nat. Immunol.3(3), 265–271 (2002).
  • Truckenmiller ME, Norbury CC. Viral vectors for inducing CD8+ T cell responses. Expert Opin. Biol. Ther.4(6), 861–868 (2004).
  • Yewdell JW, Haeryfar SM. Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. Ann. Rev. Immunol.23, 651–682 (2005).

Websites

  • HIV Vaccine Trials Network http://chi.ucsf.edu/vaccines/vaccines? page=vc-02-00
  • Malaria Vaccine Trials www.malaria-vaccines.org.uk/5.shtml
  • US Federally Funded Clinal Trials www.clinical trials.gov.ct

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.