62
Views
78
CrossRef citations to date
0
Altmetric
Review

Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates

&
Pages 579-595 | Published online: 09 Jan 2014

References

  • Klausner R, Fauci A, Corey L et al. Medicine. The need for a global vaccine enterprise. Science5628, 2036–2039 (2003).
  • Esparza J, Klausner Rl; the Coordinating Committee of the Global HIV/AIDS Vaccine Enterprise. The Global HIV/AIDS Vaccine Enterprise: Scientific Strategic Plan. 2, e25 (2005).
  • Derived from Statistics in Global Summary of the AIDS Epidemic, ‘AIDS Epidemic Update’ UNAIDS. World Health Organization, December (2005).
  • Letvin NL. Progress toward a HIV vaccine. Ann. Rev. Med.56, 213–223 (2005).
  • Gandhi R, Walker B. Immunologic control of HIV-1. Ann. Rev. Med.53, 149–172 (2002).
  • Mastro TD, Kitayaporn D. HIV type 1 transmission probabilities: estimates from epidemiologic studies. AIDS Res. Hum. Retrovir.14(Suppl. 3), S223–S227 (1998).
  • Quinn TC, Wawer JM, Sewankambo N et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. N. Engl. J. Med.342, 921–929 (2000).
  • Shibata R, Igarashi T, Haigwood N et al. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med.5, 204–210 (1999).
  • Mascola JR, Lewis GM, Stiegler G et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol.73, 4009–4018 (1999).
  • Mascola JR, Stiegler G, VanCott TC et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med.6, 207–210 (2000).
  • Parren WHI, Marx AP, Hessell AJ et al. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol.75, 8340–8347 (2001).
  • Ferrantelli F, Rasmussen RA, Buckley KA et al. Complete protection of neonatal macaques against oral challenge with pathogenic simian-human immunodeficiency virus by human anti-HIV monoclonal antibodies. J. Infect. Dis.189, 2167–2173 (2004).
  • Burton D, Stanfield R, Wilson I. Antibody vs HIV in a clash of evolutionary titans. Proc. Natl Acad. Sci. USA102, 14943–14948 (2005).
  • Haynes B, Moody A, Verkcozy L, Kelsoe G, Alam M. Polyspecificity and neutralization of HIV-1: an hypothesis. Human Antibodies14, 59–67 (2005).
  • The rgp120 HIV Vaccine Study Group. Placebo-controlled Phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis.191, 654–665 (2006).
  • Gilbert P, Ackers M, Berman P et al. HIV-1 virologic and immunologic progression and initiation of antiretroviral therapy among HIV-1-infected subjects in a trial of the efficacy of recombinant glycoprotein 120 vaccine. J. Infect. Dis.192, 974–983 (2005).
  • Levine A, Groshen S, Allen J et al. Initial studies on active immunization of HIV-infected subjects using a gp120-depleted HIV-1 immunogen: long-term follow-up. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.11, 351–364 (1996).
  • Lifson J, Rossio J, Piatak M et al. Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. AIDS Res. Hum. Retrovir.20, 772–787 (2004).
  • Whitney J, Ruprecht R. Live attenuated HIV vaccines: pitfalls and prospects. Curr. Opin. Infect. Dis.17, 17–16 (2004).
  • Koff W, Johnson P, Watkins D et al. HIV vaccine design: insights from live attenuated SIV vaccines. Nat. Immunol.7, 19–23 (2005).
  • Derdeyn C, Decker J, Bibollet-Ruche F et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science303, 2019–2022 (2004).
  • Frost S, Liu Y, Pond S, Chappey C et al. Characterization of human immunodeficiency virus type 1 (HIV-1) envelope variation and neutralizing antibody responses during transmission of HIV-1 subtype B. J. Virol.79, 6523–6527 (2005).
  • Chohan B, Lang D, Sagar M et al. Selection of human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J. Virol.79, 6528–6531 (2005).
  • Alfsen A, Iniguez P, Bouguyon E, Bomsel M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial trancytosis of HIV-1. J. Immunol.166, 6257–6265 (2001).
  • Devito C, Hinkula J, Kaul R et al. Cross-clade HIV-1-specific neutralizing IgA in mucosal and systemic compartments of HIV-1-exposed, persistently seronegative subjects. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.30, 413–420 (2002).
  • Yang X, Kurteva S, Ren X, Lee S, Sodroski J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus Type 1. J. Virol.79, 12132–12147 (2005).
  • Mascola J. Passive transfer studies to elucidate the role of antibody-mediated protection against HIV-1. Vaccine20, 1922–1925 (2002).
  • Mascola J. Defining the protective antibody response for HIV-1. Curr. Mol. Med.3, 209–216 (2003).
  • Kkusuhara H, Hohdatsu T, Okumura M et al. Dual-subtype vaccine (Fel-O-Vax FIV) Protects cats against contact challenge with heterologous subtype B FIV infected cats. Vet. Microbiol.108, 155–165 (2005).
  • Beddows S, Lister S, Cheingsong R, Bruck C, Weber J. Comparison of the antibody repertoire generated in healthy volunteers following immunization with a monomeric recombinant gp120 construct derived from a CCR5/CXCR4-using human immunodeficiency virus type 1 isolate with sera from naturally infected individuals. J. Virol.73, 1740–1745 (1999).
  • Bures RA, Gaitan T, Zhu C et al. Immunization with recombinant canarypox vectors expressing membrane-anchored gp120 followed by gp160 protein boosting fails to generate antibodies that neutralize R5 primary isolates of human immunodeficiency virus type 1. AIDS Res. Hum. Retrovir.,16, 2019–2035 (2000).
  • Mascola JR, Snyder WS, Weislow OS et al. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. J. Infect. Dis.173, 340–348 (1996).
  • Belshe RB, Graham SB, Keefer MC et al. Neutralizing antibodies to HIV-1 in seronegative volunteers immunized with recombinant gp120 from the MN strain of HIV-1. JAMA272, 475–480 (1994).
  • Gorse GJ, McElrath JM, Matthews TJ et al. Modulation of immunologic responses to HIV-1MN recombinant gp160 vaccine by dose and schedule of administration. Vaccine16, 493–506 (1998).
  • Evans TG, McElrath JM, Matthews T et al. QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine19, 2080–2091 (2001).
  • Gilbert PB, Peterson LM, Follman D et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a Phase 3 HIV-1 preventive vaccine trial. J. Infect. Dis.191, 666–677 (2005).
  • Goepfert P, Horton J, McElrath S et al. High-dose recombinant canarypox vaccine expressing HIVI-1 protein in seronegative human subjects. J. Infect. Dis.192, 1249–1259 (2005).
  • Graham BS, Matthews JT, Belshe RB et al. and the NIAID AIDS Vaccine Clinical trials Network. Augmentation of human immunodeficiency virus type 1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia-naive adults. J. Infect. Dis.167, 533–537 (1993).
  • Evans TG, Keefer CM, Weinhold K et al. A canarypox vaccine expressing multiple HIV-1 genes given alone or with SF-2 rgp120 elicits broad and durable CTL responses in seronegative volunteers. J. Infect. Dis.180, 290–298 (1999).
  • Belshe RB, Gorse JG, Mulligan MJ et al. Induction of immune responses to HIV-1 canarypox virus (ALVAC) HIV-1 and gp120 SF-2 recombinant vaccines in uninfected volunteers. AIDS12, 2407–2415 (1998).
  • Corey L, Mulligan M, Goepfert P et al. Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with rgp120. J. Infect. Dis.183, 563–570 (2001).
  • Russell ND, Graham SB, Keefer M et al. A qualifying Phase II study of an HIV-1 canarypox vaccine (vCP1452), alone and in combination with rgp120, fails to trigger a Phase III correlate of efficacy trial. J. Infect. Dis. submitted (2006).
  • Ourmanov I, Bilska M, Hirsch VH, Montefiori DC. Recombinant modified vaccinia virus Ankara expressing the surface gp120 of simian immunodeficiency virus (SIV) primes for a rapid neutralizing antibody response to SIV infection in macaques. J. Virol.74, 2960–2965 (2000).
  • Buckner C, Gines LG, Saunders CJ et al. Priming B cell-mediated anti-HIV envelope responses by vaccination allows for the long-term control of infection in macaques exposed to a R5-tropic SHIV. Virology320, 167–180 (2004).
  • Rose NF, Marx AP, Luckay A et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell106, 539–549 (2001).
  • Amara RR, Villinger F, Altman JD et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science292, 69–74 (2001).
  • Barouch DH, Santra S, Schmitz JE et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science290, 486–492 (2000).
  • Barouch DH, Santra S, Kuroda MJ et al. Reduction of simian-human immunodeficiency virus 89.6P viremia in rhesus monkeys by recombinant modified vaccinia Ankara (MVA) vaccination. J. Virol.75, 5151–5158 (2001).
  • Davis NL, Caley IJ, Brown KW et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J. Virol.74, 371–378 (2000).
  • Wang S, Arthos J, Lawrence MJ, van Ryk D et al. Enhanced immunogenicity of gp120 protein when combined with recombinant DNA priming to generate antibodies that neutralize the JR-FL primary isolate of human immunodeficiency virus type 1. J. Virol.79, 7933–7937 (2005).
  • Mascola JR, Sambor A, Beaudry K et al. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviral vectors expressing human immunodeficiency virus type 1 proteins. J. Virol.79, 771–779 (2005).
  • Evans TG, Frey S, Israel H et al. Long term memory B-cell responses in recipients of candidate human immunodeficiency virus type 1 vaccines. Vaccine222626–2630 (2004).
  • Montefiori DC, Hill ST, Vo HTT, Walker DB, Rosenberg ES. Neutralizing antibodies associated with viremia control in a subset of individuals after treatment of acute human immunodeficiency virus type 1 infection. J. Virol.75, 10200–10207 (2001).
  • Montefiori DC, Altfeld M, Lee PK et al. Viremia control despite escape from a rapid and potent autologous neutralizing antibody response after treatment-cessation in an HIV-1-infected individual. J. Immunol.170, 3906–3914 (2003).
  • Moore PL, Crooks TE, Porter L et al. The nature of non-functional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol.80(5), 2515–2528 (2006).
  • Montefiori DC. Role of complement and Fc receptors in the pathogenesis of HIV-1 infection. Springer Sem. Immunopathol.18, 371–390 (1997).
  • Forthal DN, Landucci G, Haubrich R Antibody-dependent cellular cytotoxicity independently predicts survival in severely immunocompromised human immunodeficiency virus-infected patients. J. Infect. Dis.180, 1338–1341 (1999).
  • Forthal DN, Landucci G, Daar ES. Antibody from patients with acute human immunodeficiency virus (HIV) infection inhibits primary strains of HIV type 1 in the presence of natural-killer effector cells. J. Virol.75, 6953–6961 (2001).
  • Landucci G, Phan T, R Higa-Tanner, Gilbert P, Forthal D. Individuals homozygous for the V allele of FcγRIIIa may have increased risk of HIV infection following vaccination with recombinant gp120. AIDS Vaccine 2005, September 6–9, 2005. Montreal, Quebec, Canada. Abstract #119 (2005).
  • Mascola JR, P D'Souza, Gilbert P et al. Recommendations for the design and use of standard virus panels to assess the neutralizing antibody response elicited by candidate human immunodeficiency virus type 1 vaccines. J. Virol.79, 10103–10107 (2005).
  • Li M, Gao F, Mascola JR et al. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol.79, 10108–10125 (2005).
  • Chen B, Vogah E, Gong H, Skehel J, Wiley D, Harrison S. Structure of an unliganded simian immunodeficiency virus gp120 Core. Nature433, 834–841 (2005).
  • Eckert D, Kim P. Mechanisms of viral membrane fusion and its inhibition. Ann. Rev. Biochem.70, 777–810 (2001).
  • Matthews T, Salgo M, Greenberg M, Chung J, Demasi R, Bolognesi D. Efuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discovery3, 215–225 (2004).
  • Wei X, Decker J, Wang S et al. Antibody neutralization and escape by HIV-1. Nature422, 307–312 (2003).
  • Richman D, Wrin T, Little S, Petropoulos C. Rapid evolution of the neutralizing antibody response to HIV Type 1 infection. Proc. Natl Acad. Sci. USA100, 4144–4149 (2003).
  • Frost S, Wrin T, Smith D et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus Type 1 envelope during recent HIV infection. Proc. Natl Acad. Sci. USA201, 18514–18519 (2005).
  • Palker T, Matthews T, Langlois A et al. Polyvalent human immunodeficiency virus synthetic immunogen comprised of envelope gp120 T helper cell sites and B cell neutralization epitopes. J. Immunol.142, 3612–3619 (1989).
  • Korber B, MacInnes K, Smith R, Myers G. Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus Type 1. J. Virol.68, 6730–6744 (1994).
  • Kwong P, Doyle M, Casper D et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature420, 678–682 (2002).
  • Scanlan CN, Pantophlet R, Wormald MR et al. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of α1–2 mannose residues on the outer face of gp120. J. Virol.76, 7306–7321 (2002).
  • Scanlan CN, Pantophlet R, Wormald et al. The carbohydrate epitope of the neutralizing anti-HIV-1 antibody 2G12. Adv. Exp. Med. Biol.535, 205–218 (2003).
  • Calarese DA, Lee HK, Huang CY et al. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc. Natl Acad. Sci. USA102, 13372–13377 (2005).
  • Nara PL, Smit L, Dunlop N et al. Emergence of viruses resistant to neutralization by V3-specific antibodies in experimental human immunodeficiency virus type IIIb infection of chimpanzees.J. Virol.62, 3779–3791 (1990).
  • Andeweg A, Boers P, Osterhaus A, Bosch M. Impact of natural sequences variation in the V2 region of the envelope protein of human immunodeficiency virus Type 1 on syncytium induction: a mutational analysis. J. Gen. Virol.76, 1901–1907 (1995).
  • Wyatt R, Moore J, Accola M, Desjardin E, Robinson J, Sodroski J. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus Type 1 gp120 epitopes induced by receptor binding. J. Virol.69, 5723–5733 (1995).
  • Labrosse B, Treboute C, Brelot A, Alizon M. Cooperation of the V1/V2 andV3 domains of human immunodeficiency virus Type 1 gp120 for Interaction with the CXCR4 Receptor. J. Virol.75, 5457–5464 (2001).
  • Okamoto Y, Shiosaki K, Eda Y et al. Father-to-mother-to-infant transmission of HIV-1: clonally transmitted isolate of infant mutates more rapidly than that of the mother and rapidly loses reactivity with neutralizing antibody. Microbiol. Immunol.41, 131–138 (1997).
  • Palker T, Clark M, Langlois A et al. Type-specific neutralization of the human immunodeficiency virus with antibodies to Env-coded synthetic peptides. Proc. Natl Acad. Sci. USA85, 1932–1936 (1988).
  • Gorny M, Revesz K, Williams C et al. The V3 loop is accessible on the surface of most human immunlodeficiency virus type 1 primary isolates and serves as a neutralization epitope. J. Virol.78, 2394–2404 (2004).
  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol.4, 199–210 (2004).
  • Rusche J, Javaherian K, McDanal C et al. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proc. Natl Acad. Sci. USA85, 3198–3202 (1988).
  • Javaherian K, Langlois A, LaRosa G et al. Broadly neutralizing antibodies elicited by the hyupervariable neutralizing determinant of HIV-1. Science250, 1590–1593 (1990).
  • Looney D, Fisher A. Putney S et al. Type-restricted neutralization of molecular clones of human immunodeficiency virus. Science241, 357–359 (1988).
  • Golding H, D’Souza M, Bradac J, Mathieson B, Fast P. Neutralization of HIV-1. AIDS Res. Hum. Retrovir.10, 633–643 (1994).
  • Matthews T. Dilemma of neutralization resistance of HIV-1 field isolates and vaccine development. AIDS Res. Hum. Retrovir.10, 631–632 (1994).
  • Bou-Habib DC, Roderiquez G, Oravecz T, Berman PW, Lusso P, Norcross MA. Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. J. Virol.68, 6006–6013 (1994).
  • Haynes B, Ma B, Montefiori D et al. Analysis of HIV-1 subtype B third variable region peptide motifs for induction of neutralizing antibodies against HIV-1 primary isolates. Virology345, 44–55 (2005).
  • Binley J, Wrin T, Korber B et al. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J. Virol.78, 13232–13252 (2004).
  • Krachmarov C, Pinter A, Honnen W et al. Antibodies that are cross-reactive for human immunodeficiency virus type 1 Clade A and B v3 domains are common in patient sera from Cameroon, but their neutralization activity is usually restricted by epitope masking. J. Virol.79, 780–790 (2005).
  • Gaschen B, Taylor KJ, Yusim K et al. Diversity of considerations in HIV-1 vaccine selection. Science296, 2354–2360 (2003).
  • Liao, H-X. Sutherland LL, Xia S-M et al. A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C primary viruses. Virology (2006) (In Press).
  • Huang C, Tang M, Zhang M et al. Structure of V3-containing HIV-1 gp120 core. Science310, 1025–1028 (2005).
  • Nara PL, Robey WG, Pyle SW et al. Purified envelope glycoproteins from human immunodeficiency virus type 1 induce individuals type-specific neutralizing antibodies. J. Virol.62, 2622–2628 (1988).
  • Kohler H, Gouldsmit J, Nara P. Clonal antibody dominance in HIB-1 infection: cause for a limited failing immune response. J. Acquir. Immun. Defic. Syndr.5, 1158–1168 (1992).
  • Herrera C, Klasse P, Michael E et al. The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of env-pseudotyped human immunodeficiency virus type 1 particles. Virology338, 154–172 (2005).
  • Pinter A, Honnen W, D’AGostino P, Gorny M, Zolla-Pazner S, Kayman S. The C108g epitope in the V2 domain of gp120 functions as a potent neutralization target when introduced into envelope proteins derived from human immunodeficiency virus type 1 primary isolates. J. Virol.79, 6909–6917 (2005).
  • Edinger A, Ahuja M, Sung T et al. Characterization and epitope mapping of neutralizing monoclonal antibodies produced by immunization with oligomeric simian immunodeficiency virus envelope protein. J. Virol.74, 7922–7935 (2000).
  • Pinter A, Honnen W, Kayman S, Trochev O, Wu Z. Potent neutralization of primary HIV-1 isolates by antibodies directed against epitopes present in the V1/V2 domain of HIV-1 gp120. Vaccine16, 1803–1811 (1998).
  • Wu Z, Kayman S, Honnen W et al. Characterization of neutralization epitopes in the V2 region of human immunodeficiency virus type 1 gp120: role of glycosylation in the correct folding of the V1/V2 domain. J. Virol.69, 2271–2278 (1995).
  • Skott P, Achour A, Norin M, Thorstensson R, Bjorling E.Characterization of neutralization sites in the second variable and fourth variable region in gp125 and a conserved region in gp36 of human immunodeficiency virus type 2. Viral Immunol.12, 79–88 (1999).
  • Bolmstedt A, Sjolander S, Hansen J et al. Influence of N-linked glycans in V4-V5 region of human immunodeficiency virus type 1 glycoprotein gp160 on induction of a virus-neutralizing humoral response. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.12, 213–220 (1996).
  • Pinter A, Honnen W, He Y, Gorney M, Zolla-Pazner S, Kayman S. The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J. Virol.78, 5205–5215 (2004).
  • Ren X, Sodroski J, Yang X. An unrelated monoclonal antibody neutralizes human immunodeficiency virus type 1 by binding to an artificial epitope engineered in a functionally neutral region of the viral envelope glycoproteins. J. Virol.79, 5616–5624 (2005).
  • Burton D, Pyati R, Koduri S et al. Efficient neutralization of primary isolates of HIV-1 by recombinant human monoclonal antibody. Science266, 1024 (1994).
  • Haynes B, Fleming J, St Clair E et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science308, 1906 (2005).
  • Pantophlet R, Burton D. Immunofocusing: antigen engineering to promote the induction of HIV-neutralizing antibodies. Trends Mol. Med.9, 468–473 (2003).
  • Pantophlet R, Wilson I, Burton D. Improved design of an antigen with enhanced specificity for the broadly HIV-neutralizing antibody b12. Prot. Eng. Design Selection17, 749–758 (2004).
  • Selvarjah S, Puffer B, Pantophlet R, Law M, Doms R, Burton D. Comparing antigenicity and immunogenicity of engineered gp120. J. Virol.79, 12148–12163 (2005).
  • Decker J, Bibollet-Ruche F, Wei X et al. Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J. Exp. Med.201, 1407–1419 (2005).
  • Labrijn A, Poignard P, Raja A et al. Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J. Virol.77, 10557–10565 (2003).
  • LaBranche C, Hoffman T, Romano J et al. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J. Virol.73, 10310–10319 (1999).
  • Edwards T, Hoffman T, Baribaud F et al. Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J. Virol.75, 5230–5239 (2001).
  • Conley A, Kessler A, Boots L et al. Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41–2F5, an anti-gp41 human monoclonal antibody. Proc. Natl Acad. Sci. USA91, 3348 (1994).
  • Stiegler G, Kunert R, Purtscher M et al. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retrovir.17, 1757 (2001).
  • Roben P, Moore J, Thali M, Sodroski J, Barbas C, Burton D. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J. Virol.68, 4821 (1994).
  • Muster T, Stindl F, Purtscher M et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol.67, 6642 (1993).
  • Zwick MB, Labrijn AF, Wang M et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol.75, 10892–10905 (2001).
  • Ofek G, Tang M, Sambor A et al. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J. Virol.78, 10724 (2004).
  • Cardoso R, Zwick M, Stanfield R et al. Broadly neutralzing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity22, 163 (2005).
  • Burton D, Desrosiers R. Doms R et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol.5, 233 (2004).
  • Bibollet-Ruche F, Li H, Decker M et al.Detection of novel neutralizing antibody reactivities against the membrane proximal external region (MPER) of gp41 in HIV-1 infected humans. AIDS Vaccine (2005) Meeting (September 6–9, 2005), Montreal, Canada, Abstract 71 (2005).
  • Walmsley SK, Katlama HC, Nelson M et al. Enfuvirtide (T-20) cross-reactive glycoprotein 41 antiobdy does not impair the efficacy or safety of enfuvirtide. J. Infect. Diseases188, 1827–1833 (2003).
  • Zwick M, Jensen R, Church W et al. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial studies in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J. Virol.79, 1252 (2005).
  • Earl P, Broder C, Doms R, Moss B. Epitope map of human immunodeficiency virus gype 1 gp41 derived from 47 monoclonal antibodies produced by immunization with oligomeric envelope protein. J. Virol.71, 2674 (1997).
  • Golding H, Zaitseva M, de Rosny E et al. Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J. Virol.76, 6780–6790 (2002).
  • Maksyutov AZ, Bachinskii AG, Bazhan SI et al. Exclusion of HIV epitopes shared with human proteins is prerequisite for designing safer AIDS vaccines. J. Clin. Virol.1(Suppl.), S26–38 (2004).
  • Su TT, Guo B, Wei B, Braun J, Rawlings DJ. Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunol. Rev.197, 161–78 (2004).
  • Tsuiji M, Yurasov S, Velinzon K, Thomas S, Nussenzweig MC, Wardemann H. A checkpoint for autoreactivity in human IgM+ memory B cell development. J. Exp. Med.203, 393–400 (2006).
  • Meffre E, Milili M, Blanco-Betancourt C, Antunes H, Nussenzweig MC, Schiff C. Immunoglobulin heavy chain expression shapes the B cell receptro repertor in human B cell development. J. Clin. Invest.108, 879–886 (2001).
  • Lopalco L, Barassi C, Paolucci C et al. Predictive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral responses in HIV-1-exposed seronegative cohorts of European and Asian origin. J. Gen. Virol.86, 339–348 (2005).
  • Montefiori DC, Safrit TJ, SL Lydy et al. Induction of neutralizing antibodies and Gag-specific cellular immune responses to an R5 primary isolate of human immunodeficiency virus type 1 in vaccinated rhesus macaques. J. Virol.75, 5939–5948 (2001).
  • Berkower I M, Raymond J, Muller A, Spadaccini A. Aberseen. Assembly, structure, and antigenic properties of virus-like particles rich in HIV-1 envelope gp120. Virology321, 75–86 (2004).
  • Grundner C, Mirzabekov T, Sodroski J, Wyatt R. Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins. J. Virol.76, 3511–3521 (2002).
  • Sakaue G, Hiroi T, Nakagawa Y et al. HIV mucosal vaccine: nasal immunization with gp160-encapsulated hemagglutinating virus of Japan-liposome induces antigen-specific CTLs and neutralizing antibody responses. J. Immunol.170, 495–502 (2003).
  • Arthur LO, Bess WJ, Chertova EN Jr. Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Res. Hum. Retrovir.14(Suppl. 3), S311–S319 (1998).
  • Rossio JL, Esser TM, Suryanarayana K. Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J. Virol.72, 7992–8001 (1998).
  • Montefiori DC, Hirsch MV, Johnson PR. AIDS response. (Scientific Correspondence). Nature,354, 439–440 (1991).
  • Langlois AJ, Weinhold JK, Matthews JT, Greenberg ML, Bolognesi DP. Detection of anti-human cell antibodies in sera from macaques immunized with whole inactivated virus. AIDS Res. Hum. Retrovir.8, 1641–1652 (2005).
  • Hammonds J, Chen X, Fouts T, DeVico A, Montefiori D, Spearman P. Induction of neutralizing antibodies against human immunodeficiency virus type 1 primary isolates by Gag-Env pseudovirion immunization. J. Virol.79, 14804–14814 (1992).
  • Sanders RW, Vesanen M, Schuelke N. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol.76, 8875–8889 (2002).
  • Yang X, Farzan M, Wyatt R, Sodroski J. Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol.74, 5716–5725 (2000).
  • Yang X, Florin L, M Farzan P et al. Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution. J. Virol.74, 4746–4654 (2000).
  • Beddows S, Schulke N, M Kirschner et al. Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol.79, 8812–8827 (2005).
  • Yang X, Wyatt R, Sodroski J. Improved elicitation of neutralizing antibodies against primary human immunodeficiency viruses by soluble stabilized envelope glycoprotein trimers. J. Virol.75, 1165–1171 (2001).
  • Kim M, Qiao Z, Montefiori CD, Haynes BF, Reinherz LE, Liao H-X. Comparison of HIV type 1 ADA gp120 monomers versus gp140 trimers as immunogens for the induction of neutralizing antibodies. AIDS Res. Hum. Retrovir.,21, 58–67 (2005).
  • Bolmstedt A, Hinkula J, Rowcliffe E, Biller M, Wahren B, Olofsson S. Enhanced immunogenicity of a human immunodeficiency virus type 1 env DNA vaccine by manipulating N-glycosylation signals: Effects of elimination of the V3 N306 glycan. Vaccine20, 397–405 (2002).
  • Quinones-Kochs MI, Buonocore L, Rose JK. Role of N-linked glycans in a human immunodeficiency virus envelope glycoprotein: effects on protein function and the neutralizing antibody response. J. Virol.76, 4199–4211 (2002).
  • Reitter JN, Means ER, Desrosiers RC. A role for carbohydrates in immune evasion in AIDS. Nat. Med.4, 679–684 (1998).
  • Mori K, Sugimoto C, Ohgimoto S et al. Influence of glycosylation on the efficacy of an Env-based vaccine against simian immunodeficiency virus SIVmac239 in a macaque AIDS model. J. Virol.79, 10386–10396 (2005).
  • Barnett SW, Lu S, Sravastava I et al. The ability of an oligomeric human immunodeficiency virus type 1 (HIV-1) envelope antigen to elicit neutralizing antibodies against primary HIV-1 isolates is improved following partial deletion of the second hypervariable region. J. Virol.75, 5526–5540 (2001).
  • Cherpelis S, Shrivastava I, Gettie A, Jin X, Ho DD, Barnett SW. DNA vaccination with the human immunodeficiency virus type 1 SF162ΕV2 envelope elicits immune responses that offer partial protection from simian/human immunodeficiency virus infection to CD8+ T cell- depleted rhesus macaques. J. Virol.75, 1547–1550 (2001).
  • Gzyl J, Bolesta E, Wierzbicki A et al. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses. Virology318, 493–506 (2004).
  • Kim YB, Han PD, Cao C, Cho MW. Immunogenicity and ability of variable loop-deleted human immunodeficiency virus type 1 envelope glycoproteins to elicit neutralizing antibodies. Virology305, 124–137 (2003).
  • Srivastava IK, VanDorsten K, Vojtech L, Barnett WS, Stomatatos L. Changes in the immunogenic properties of soluble gp140 human immunodeficiency virus envelope constructs upon partial deletion of the second hypervariable region. J. Virol.77, 2310–2320 (2003).
  • LaCasse RA, Follis KE, Trahey M, Scarborough JD, Littman DR, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science283(5570), 1025 (2002).
  • Nunberg, JH (2002). Retraction of "LaCasse RA, Follis EK, Trahey M, Scarborough DJ, Littman RD, Nunberg JH. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science283, 357–362." Retraction in Science 296, 1025(1999).
  • Fouts TR, Tuskan R, Godfrey K et al. Expression and characterization of a single-chain polypeptide analogue of the human immunodeficiency virus type 1 gp120-CD4 receptor complex. J. Virol.74, 11427–11436 (2000).
  • DeVico A, Silver A, Thornton MA, Sarngadharan GM, Pal R. Covalently crosslinked complexes of human immunodeficiency virus type 1 (HIV-1) gp120 and CD4 receptor elicit a neutralizing immune response that includes antibodies selective for primary virus isolates. Virology218, 258–263 (1996).
  • Fouts T, Godfrey K, Bobb K et al. Crosslinked HIV-1 envelope-CD4 receptor complexes elicit broadly cross-reactive neutralizing antibodies in rhesus macaques. Proc. Natl Acad. Sci. USA99, 11842–11847 (2002).
  • Varadarajan R, Sharma D, Chakraborty K et al. Characterization of gp120 and its single-chain derivatives, gp120-CD4D12 and gp120-M9: Implications for targeting the CD4i epitope in human immunodeficiency virus vaccine design. J. Virol.79, 1713–1723 (2005).
  • Wyatt R, Moore J, Accola M, Desjardin E, Robinson J, Sodroski J. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. J. Virol.69, 5723–5733 (1995).
  • Liao H-X, S Munir Alam, Mascola JR et al. Immunogenicity of constrained monoclonal antibody A32-human immunodeficiency virus (HIV) Env gp120 complexes compared to that of recombinant HIV type 1 gp120 envelope glycoprotein. J. Virol.78, 5270–5278 (2004).
  • Sullivan N, Sun Y, Sattentau Q et al. CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J. Virol.72, 4694–4703 (1998).
  • Coëffier E, Clément J-M, Cussac V et al. Antigenicity and immunogenicity of the HIV-1 gp41 epitope ELDKWA inserted into permissive sites of the MalE protein. Vaccine 19, 684–693 (2001).
  • Eckhart L, Raffelsberger W, Ferko B et al. Immunogenic presentation of a conserved gp41 epitope of human immunodeficiency virus type 1 on recombinant surface antigen of hepatitis B virus. J. Gen. Virol.77, 2001–2008 (1996).
  • Joyce JG, Hurni MW, Bogusky MJ et al. Enhancement of -helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro: implications for vaccine design. J. Biol. Chem.277, 45811–45820 (2002).
  • Liang X, Munshi S, Shendure J et al. Epitope insertion into variable loops of HIV-1 gp120 as a potential means to improve immunogenicity of viral envelope protein. Vaccine17, 2862–2872 (1999).
  • McGaughey GB, Citron M, Danzeisen RC et al. HIV-1 vaccine development: constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb. Biochemisty42, 3214–3223 (2003).
  • Zwick MB, Bonnycastle A, Menendez MB et al. Identification and characterization of a peptide that specifically binds the human, broadly neutralizing anti-human immunodeficiency virus type 1 antibody b12. J. Virol.75, 6692–6699 (2001).
  • Bures R, Morris L, Williamson C et al. Regional clustering of shared neutralization determinants on primary isolates of Clade C human immunodeficiency virus type 1 from South Africa. J. Virol.76, 2233–2244 (2002).
  • McKeating JA, Cordell J, Dean JC, Balfe P. Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type 1 gp120. Virology191, 732–742 (1992).
  • Tilley SA, Honnen JW, Racho EM, Chou T-C, Pinter A. Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4-binding site of gp120. AIDS Res. Hum. Retrovir.8, 461–467 (1992).
  • Potts BJ, Field GK, Wu Y, Posner M, Cavacini L, White-Scharf M. Synergistic inhibition of HIV-1 by CD4 binding domain reagents and V3-directed monoclonal antibodies. Virology197, 415–419 (1993).
  • Montefiori DC, Graham SB, JT Zhou et al; and the NIH AIDS Vaccine Clinical Trials Network. V3-specific neutralizing antibodies in sera from HIV-1 gp160-immunized volunteers block virus fusion and act synergistically with human monoclonal antibody to the conformation-dependent CD4 binding region of gp120. J. Clin. Invest.92, 840–847 (1993).
  • Mascola JR, Louder KM, VanCott TC et al. Potent and synergistic neutralization of human immunodeficiency virus (HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin combined with monoclonal antibodies 2F5 and 2G12. J. Virol.71, 7198–7206 (1997).
  • Zwick MB, Wang M, Poignard P et al. Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J. Virol.75, 12198–12208 (2001).
  • Xu W, BA Smith-Franklin, Li P-L et al. Potent neutralization of primary human immunodeficiency virus Clade C isolates with a synergistic combination of human monoclonal antibodies raised against Clade B. J. Hum. Virol.4, 55–61 (2001).
  • Zhang M-Y, Shu Y, Rudolph D et al. Improved breadth and potency of an HIV-1 neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J. Mol. Biol.335, 209–219 (2004).
  • Barbas CF III, Hu D, Dunlop N et al.In vitro evolution of a neutralizing human antibody to HIV-1 to enhance affinity and broaden strain cross-reactivity. Proc. Natl Acad. Sci. USA91, 3809–3813 (1994).
  • Yang WP, Green K, Pinz-Sweeney S, Briones TA, Burton RD, Barbas CF III. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol.254, 392–403 (1995).
  • Cho MW, Kim BY, Lee MK et al. Polyvalent envelope glycoprotein vaccine elicits a broader neutralizing antibody response but is unable to provide sterilizing protection against heterologous simian/human immunodeficiency virus infection in pigtailed macaques. J. Virol.75, 2224–2234 (2001).
  • Rollman E, Hinkula J, Arteaga J et al. Multi-subtype gp160 DNA immuinization induces broadly neutralizing anti-HIV antibodies. Gen. Ther.1–9 (2004).
  • Pal R, Wang S, Kalyanaraman V et al. Polyvalent DNA prime and envelope protein boost HIV-1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolate. AIDS Res. Hum. Retrovir.14(Suppl. 3), 226–236 (2005).
  • Zhan X, Martin LN, Slobod KS et al. Multi-envelope HIV-1 vaccine devoid of SIV components controls disease in macaques challenged with heterologous pathogenic SHIV. Vaccine23, 5306–20 (2005).
  • Nickle DC, Jensen AM, GS Gottlieb et al. Consensus and ancestral state HIV vaccines. Science299, 1515–1518 (2003).
  • Doria-Rose N, Learn HG, Rodrigo AG et al. Human immunodeficiency virus Type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a native contemporary subtype B envelope. J. Virol.79, 11214–11224 (2005).
  • Gao F, Weaver AE, Lu Z et al. Antigenicity and immunogenicity of a synthetic human immunodeficiency virus type 1 group M consensus envelope glycoprotein. J. Virol.79, 1154–1163 (2005).
  • Pantophlet R, Wilson AI, Burton DR. Hyperglycosylated mutants of human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens for HIV vaccine design. J. Virol.77, 5889–5910 (2003).
  • Nara PL, Garrity R. Deceptive imprinting: a cosmopolitan strategy for complicating vaccination. Vaccine16, 1780–1787 (1998).
  • Garrity RR, Rimmelzwaan G, Minassian A et al. Refocusing neutralizing antibody responses by targeted dampening of an immunodominant epitope. J. Immunol.77, 5589–5910 (1997).
  • Selvarajah S, Puffer B, Pantophlet R, Law M, Doms R, Burton D. Evaluating antigenicity and immunogenicity of engineered gp120s. AIDS Vaccine 2005, September 6–9, 2005. Montreal, Quebec, Canada. Abstract #72 (2005).
  • Sanders RW, Schiffner L, Master A et al. Variable-loop deleted variants of the human immunogenicity virus type 1 envelope glycoprotein can be stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits. J. Virol.74, 5091–5100 (2000).
  • Srivastava IK, Stamatatos L, Kan E. Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J. Virol.77, 11244–11259 (2003).
  • Jiang ZH, Koganty RR. Synthetic vaccines: the role of adjuvants in immune targeting. Curr. Med. Chem.10, 1423–1439 (2003).
  • Kaisho T, Akira, S Regulation of dendritic cell function through toll-like receptors. Curr. Mol. Med.3, 759–771 (2003).
  • Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Sem. Immunol.16, 17–22 (2004).
  • Baldridge JR, McGowan P, Evans JT et al. Taking a toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin. Biol. Ther.4, 1129–1138 (2004).
  • Kaisho T, Akira, S Pleiotropic function of Toll-like receptors. Microb. Infect.6, 1388–1394 (2004).
  • Vollmer J. Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin. Biol. Ther.5, 673–682 (2005).
  • Gluck R, Burri KG, Metcalfe I. Adjuvant and antigen delivery properties of virosomes. Curr. Drug Deliv.2, 395–400 (2005).
  • Brown LE, Jackson DC. Lipid-based self-adjuvanting vaccines. Curr. Drug Deliv.2, 383–393 (2005).
  • Graham BS. New Approaches to Vaccine Adjuvants: Inhibiting the Inhibitor. PLoS Med.3, e57 (2006).
  • Moore AC, Gallimore A, Draper SJ, Watkins KR, Gilbert SC, Hill AV. Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. J. Immunol.175, 7264–7273 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.