47
Views
10
CrossRef citations to date
0
Altmetric
Perspective

Mucosal vaccine development for botulinum intoxication

, , &
Pages 35-45 | Published online: 09 Jan 2014

References

  • Bienenstock J, McDermott M, Befus D, O’Neill M. A common mucosal immunologic system involving the bronchus, breast and bowel. Adv. Exp. Med. Biol.107, 53–59 (1978).
  • Boyaka PB, Marinaro M, Fujihashi K, McGhee JR. Host defenses at mucosal surfaces. In: Clinical Immunology. Rich RR, Fleisher TA, Shearer WT, Kotzin BL, Schroedoer JHW (Eds). Mosby International Ltd, London, UK, 20.21–20.18 (2001).
  • Mestecky J, Blumberg RS, Kiyono H, McGhee JR. The mucosal immune system. In: Fundamental Immunology. Paul WE (Ed.). Lippincott Williams & Wilkins, PA, USA, 965–1020 (2003).
  • Fujihashi K, Boyaka PN, McGhee JR. Mucosal immune responses. In: Topley and Wilson’s Microbiology and Microbial Infections. Kaufmann SHE, Sreward M (Eds). Edward Arnold Limited, London, UK, 519–554 (2005).
  • Bernstein JM. Mucosal immunology of the upper respiratory tract. Respiration59, 3–13 (1992).
  • Kuper CF, Koornstra PJ, Hameleers DM et al. The role of nasopharyngeal lymphoid tissue. Immunol. Today13, 219–224 (1992).
  • Hagiwara Y, McGhee JR, Fujihashi K et al. Protective mucosal immunity in aging is associated with functional CD4+ T cells in nasopharyngeal-associated lymphoreticular tissue. J. Immunol.170, 1754–1762 (2003).
  • Yamamoto S, Kiyono H, Yamamoto M et al. A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc. Natl Acad. Sci. USA94, 5267–5272 (1997).
  • Namikoshi J, Otake S, Maeba S et al. Specific antibodies induced by nasally administered 40-kDa outer membrane protein of Porphyromonas gingivalis inhibits coaggregation activity of P. gingivalis. Vaccine22, 250–256 (2003).
  • Kweon MN, Yamamoto M, Watanabe F et al. A nontoxic chimeric enterotoxin adjuvant induces protective immunity in both mucosal and systemic compartments with reduced IgE antibodies. J. Infect. Dis.186, 1261–1269 (2002).
  • Hirabayashi Y, Kurata H, Funato H et al. Comparison of intranasal inoculation of influenza HA vaccine combined with cholera toxin B subunit with oral or parenteral vaccination. Vaccine8, 243–248 (1990).
  • Tamura SI, Kurata T. Intranasal immunization with influenza vaccine. In: Mucosal Vaccines. Kiyono H, Ogra PL, McGhee JR (Eds). Academic Press, Inc., CA, USA, 425–436 (1996).
  • Tamura S, Ito Y, Asanuma H et al. Cross-protection against influenza virus infection afforded by trivalent inactivated vaccines inoculated intranasally with cholera toxin B subunit. J. Immunol.149, 981–988 (1992).
  • Hashigucci K, Ogawa H, Ishidate T et al. Antibody responses in volunteers induced by nasal influenza vaccine combined with Escherichia coli heat-labile enterotoxin B subunit containing a trace amount of the holotoxin. Vaccine14, 113–119 (1996).
  • van Ginkel FW, McGhee JR, Liu C et al. Adenoviral gene delivery elicits distinct pulmonary-associated T helper cell responses to the vector and to its transgene. J. Immunol.159, 685–693 (1997).
  • van Ginkel FW, Liu C, Simecka JW et al. Intratracheal gene delivery with adenoviral vector induces elevated systemic IgG and mucosal IgA antibodies to adenovirus and β-galactosidase. Hum. Gene Ther.6, 895–903 (1995).
  • Sakaguchi G. Clostridium botulinum toxins. Pharmacol. Ther.19, 165–194 (1982).
  • Simpson LL. Molecular pharmacology of botulinum toxin and tetanus toxin. Annu. Rev. Pharmacol. Toxicol.26, 427–453 (1986).
  • Simpson LL, Maksymowych AB, Kiyatkin N. Botulinum toxin as a carrier for oral vaccines. Cell. Mol. Life Sci.56, 47–61 (1999).
  • Sugiyama H. Clostridium botulinum neurotoxin. Microbiol. Rev.44, 419–448 (1980).
  • MacDonald KL, Cohen ML, Blake PA. The changing epidemiology of adult botulism in the United States. Am. J. Epidemiol.124, 794–799 (1986).
  • Bonventre PF. Absorption of botulinal toxin from the gastrointestinal tract. Rev. Infect. Dis.1, 663–667 (1979).
  • DasGupta BR, Sugiyama H. A common subunit structure in Clostridium botulinum type A, B and E toxins. Biochem. Biophys. Res. Commun.48, 108–112 (1972).
  • Inoue K, Fujinaga Y, Watanabe T et al. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect. Immun.64, 1589–1594 (1996).
  • Oguma K, Fujinaga Y, Inoue K. Structure and function of Clostridium botulinum toxins. Microbiol. Immunol.39, 161–168 (1995).
  • Coleman IW. Studies on the oral toxicity of Clostridium botulinum toxin, type A. Can. J. Biochem. Physiol.32, 27–34 (1954).
  • Dack G, Gibbard J. Permeability of the small intestine of rabbits and hogs to botulinum toxin. J. Infect. Dis.39, 181–185 (1926).
  • Dack GM, Gibbard J. Studies on botulinum toxin in the alimentary tract of hogs rabbits, guinea pigs and mice. J. Infect. Dis.39, 173–180 (1926).
  • Dack GM, Hoskins D. Absorption of botulinum toxin from the colon of Macaca mulatta. J. Infect. Dis.71, 2610–2613 (1942).
  • Dack GM, Wood WL. Inpermeability of the small intestine of rabbits to botulinum toxin. J. Infect. Dis.40, 585–587 (1927).
  • Halliwell G. The action of proteolytic enzymes on Clostridium botulinum type A toxin. Biochem. J.58, 4–8 (1954).
  • Heckly RJ, Hildebrand GJ, Lamanna C. On the size of the toxic particle passing the intestinal barrier in botulism. J. Exp. Med.111, 745–759 (1960).
  • Kalamanson GM, Bronfenbrenner J. Restortion of activity of neutralized biologic agents by removal of the antibody with papain. J. Immunol.47, 387–407 (1943).
  • Lamanna C, Eklund HW, McElroy OE. Botulinum toxin (type A); including a study of shaking with chloroform as a step in the isolation procedure. J. Bacteriol.52, 1–13 (1946).
  • Littauer U. Observations on the type A toxin of Clostridium botulinum. Nature167, 994–995 (1951).
  • May AJ, Whaler BC. The absorption of Clostridium botulinum type A toxin from the alimentary canal. Brit. J. Exp. Path.39, 307–316 (1958).
  • Ohishi I, Sugii S, Sakaguchi G. Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect. Immun.16, 107–109 (1977).
  • Sugii S, Ohishi I, Sakaguchi G. Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect. Immun.16, 910–914 (1977).
  • Sugii S, Ohishi I, Sakaguchi G. Intestinal absorption of botulinum toxins of different molecular sizes in rats. Infect. Immun.17, 491–496 (1977).
  • Ohishi I, Sakaguchi G. Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect. Immun.28, 303–309 (1980).
  • Ohishi I. Oral toxicities of Clostridium botulinum type A and B toxins from different strains. Infect. Immun.43, 487–490 (1984).
  • Maksymowych AB, Simpson LL. Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J. Biol. Chem.273, 21950–21957 (1998).
  • Maksymowych AB, Reinhard M, Malizio CJ et al. Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect. Immun.67, 4708–4712 (1999).
  • Kozaki S, Kamata Y, Nagai T, Ogasawara J, Sakaguchi G. The use of monoclonal antibodies to analyze the structure of Clostridium botulinum type E derivative toxin. Infect. Immun.52, 786–791 (1986).
  • Kozaki S, Miyazaki S, Sakaguchi G. Development of antitoxin with each of two complementary fragments of Clostridium botulinum type B derivative toxin. Infect. Immun.18, 761–766 (1977).
  • Clayton MA, Clayton JM, Brown DR, Middlebrook JL. Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli. Infect. Immun.63, 2738–2742 (1995).
  • Middlebrook JL. Protection strategies against botulinum toxin. Adv. Exp. Med. Biol.383, 93–98 (1995).
  • Atassi MZ, Dolimbek BZ, Hayakari M et al. Mapping of the antibody-binding regions on botulinum neurotoxin H-chain domain 855–1296 with antitoxin antibodies from three host species. J. Protein Chem.15, 691–700 (1996).
  • Oshima M, Hayakari M, Middlebrook JL, Atassi MZ. Immune recognition of botulinum neurotoxin type A: regions recognized by T cells and antibodies against the protective H(C) fragment (residues 855–1296) of the toxin. Mol. Immunol.34, 1031–1040 (1997).
  • Oshima M, Middlebrook JL, Atassi MZ. Antibodies and T cells against synthetic peptides of the C-terminal domain (Hc) of botulinum neurotoxin type A and their cross-reaction with Hc. Immunol. Lett.60, 7–12 (1998).
  • Rosenberg JS, Middlebrook JL, Atassi MZ. Localization of the regions on the C-terminal domain of the heavy chain of botulinum A recognized by T lymphocytes and by antibodies after immunization of mice with pentavalent toxoid. Immunol. Invest.26, 491–504 (1997).
  • Bavari S, Pless DD, Torres ER, Lebeda FJ, Olson MA. Identifying the principal protective antigenic determinants of type A botulinum neurotoxin. Vaccine16, 1850–1856 (1998).
  • Quan CP, Berneman A, Pires R, Avrameas S, Bouvet JP. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect. Immun.65, 3997–4004 (1997).
  • Crottet P, Corthesy B. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab')2: a possible implication for mucosal defense. J. Immunol.161, 5445–5453 (1998).
  • Russell MW, Kilian M, Lamm ME. Biological activities of IgA. In: Mucosal Immunology. Ogra PL, Mestecky J, Lamm ME et al. (Eds). Academic Press, CA, USA 225–240 (1998).
  • Kroese FG, de Waard R, Bos NA. B-1 cells and their reactivity with the murine intestinal microflora. Semin. Immunol.8, 11–18 (1996).
  • Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun.63, 3904–3913 (1995).
  • Rejnek JJ, Travnicek J, Kostka J. Study of the effect of antibodies in the intestinal tract of germ-free baby pigs. Folia. Microbiol.13, 36–42 (1968).
  • Kraehenbuhl J-P, Neutra MR. Monoclonal secretory IgA for protection of the intestinal mucosa against viral and bacterial pathogens. In: Handbook of Mucosal Immunology. Ogra PL, Mestecky J, Lamm ME et al. (Eds). Academic Press, CA, USA (1994).
  • Renegar KB, Small JPA. Passive immunization: systemic and mucosal. In: Mucosal Immunology. Ogra PL, Mestecky J, Lamm ME et al. (Eds). Academic Press, CA, USA 729–738 (1998).
  • Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Nedrud JG. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl Acad. Sci. USA89, 6901–6905 (1992).
  • Peppard JV, Russell MW. Phylogenetic development and comparative physiology of IgA. In: Mucosal Immunology. Ogra PL, Mestecky J, Lamm ME et al. (Eds). Academic Press, CA, USA 163–179 (1998).
  • Byrne MP, Smith LA. Development of vaccines for prevention of botulism. Biochimie82, 955–966 (2000).
  • Arnon SS, Schechter R, Inglesby TV et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA285, 1059–1070 (2001).
  • Singh BR, DasGupta BR. Molecular differences between type A botulinum neurotoxin and its toxoid. Toxicon27, 403–410 (1989).
  • Byrne MP, Smith TJ, Montgomery VA, Smith LA. Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect. Immun.66, 4817–4822 (1998).
  • Crosby RM, Richardson KK, Craft TR et al. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli. Environ. Mol. Mutagen.12, 155–166 (1988).
  • Hatheway CL. Toxoid of Clostridium botulinum type F: purification and immunogenicity studies. Appl. Environ. Microbiol.31, 234–242 (1976).
  • Wartew GA. The health hazards of formaldehyde. J. Appl. Toxicol.3, 121–126 (1983).
  • Dertzbaugh MT, West MW. Mapping of protective and cross-reactive domains of the type A neurotoxin of Clostridium botulinum. Vaccine14, 1538–1544 (1996).
  • Lee JS, Pushko P, Parker MD et al. Candidate vaccine against botulinum neurotoxin serotype A derived from a Venezuelan equine encephalitis virus vector system. Infect. Immun.69, 5709–5715 (2001).
  • Bennett AM, Perkins SD, Holley JL. DNA vaccination protects against botulinum neurotoxin type F. Vaccine21, 3110–3117 (2003).
  • Gelzleichter TR, Myers MA, Menton RG et al. Protection against botulinum toxins provided by passive immunization with botulinum human immune globulin: evaluation using an inhalation model. J. Appl. Toxicol.19(Suppl. 1), S35–S38 (1999).
  • Benton KA, Misplon JA, Lo CY et al. Heterosubtypic immunity to influenza A virus in mice lacking IgA, all Ig, NKT cells, or γ δ T cells. J. Immunol.166, 7437–7445 (2001).
  • Mbawuike IN, Pacheco S, Acuna CL et al. Mucosal immunity to influenza without IgA: an IgA knockout mouse model. J. Immunol.162, 2530–2537 (1999).
  • Asanuma H, Koide F, Suzuki Y et al. Cross-protection against influenza virus infection in mice vaccinated by combined nasal/subcutaneous administration. Vaccine13, 3–5 (1995).
  • Kadowaki S, Chen Z, Asanuma H et al. Protection against influenza virus infection in mice immunized by administration of hemagglutinin-expressing DNAs with electroporation. Vaccine18, 2779–2788 (2000).
  • Tamura S, Funato H, Hirabayashi Y et al. Functional role of respiratory tract haemagglutinin-specific IgA antibodies in protection against influenza. Vaccine8, 479–485 (1990).
  • Asahi-Ozaki Y, Yoshikawa T, Iwakura Y et al. Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus. J. Med. Virol.74, 328–335 (2004).
  • Taysse L, Daulon S, Calvet J et al. Induction of acute lung injury after intranasal administration of toxin botulinum a complex. Toxicol. Pathol.33, 336–342 (2005).
  • Arnon SS, Damus K, Thompson B, Midura TF, Chin J. Protective role of human milk against sudden death from infant botulism. J. Pediatr.100, 568–573 (1982).
  • Kiyatkin N, Maksymowych AB, Simpson LL. Induction of an immune response by oral administration of recombinant botulinum toxin. Infect. Immun.65, 4586–4591 (1997).
  • Foynes S, Holley JL, Garmory HS, Titball RW, Fairweather NF. Vaccination against type F botulinum toxin using attenuated Salmonella enterica var Typhimurium strains expressing the BoNT/F H(C) fragment. Vaccine21, 1052–1059 (2003).
  • Atlas RM. Bioterriorism: from threat to reality. Annu. Rev. Microbiol.56, 167–185 (2002).
  • Franz DR, Jahrling PB, Friedlander AM et al. Clinical recognition and management of patients exposed to biological warfare agents. JAMA278, 399–411 (1997).
  • Simpson LL. Identification of the major steps in botulinum toxin action. Annu. Rev. Pharmacol. Toxicol.44, 167–193 (2004).
  • Mahmut N, Inoue K, Fujinaga Y et al. Mucosal immunisation with Clostridium botulinum type C 16 S toxoid and its non-toxic component. J. Med. Microbiol.51, 813–820 (2002).
  • Kobayashi R, Kohda T, Kataoka K et al. A novel neurotoxoid vaccine prevents mucosal botulism. J. Immunol.174, 2190–2195 (2005).
  • Park JB, Simpson LL. Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect. Immun.71, 1147–1154 (2003).
  • Nowakowski A, Wang C, Powers DB et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl Acad. Sci. USA99, 11346–11350 (2002).
  • Mikszta JA, Sullivan VJ, Dean C et al. Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J. Infect. Dis.191, 278–288 (2005).
  • Peachman KK, Rao M, Alving CR et al. Correlation between lethal toxin-neutralizing antibody titers and protection from intranasal challenge with Bacillus anthracis Ames strain spores in mice after transcutaneous immunization with recombinant anthrax protective antigen. Infect. Immun.74, 794–797 (2006).
  • Maddaloni M, Staats HF, Mierzejewska D et al. Mucosal vaccine targeting improves onset of mucosal and systemic immunity to botulinum neurotoxin A. J. Immunol.177, 5524–5532 (2006).
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol.165, 4778–4782 (2000).
  • Eriksson AM, Schon KM, Lycke NY. The cholera toxin-derived CTA1-DD vaccine adjuvant administered intranasally does not cause inflammation or accumulate in the nervous tissues. J. Immunol.173, 3310–3319 (2004).
  • van Ginkel FW, Jackson RJ, Yoshino N et al. Enterotoxin-based mucosal adjuvants alter antigen trafficking and induce inflammatory responses in the nasal tract. Infect. Immun.73, 6892–6902 (2005).
  • Yoshino N, Lu FX, Fujihashi K et al. A novel adjuvant for mucosal immunity to HIV-1 gp120 in nonhuman primates. J. Immunol.173, 6850–6857 (2004).
  • Kataoka K, McGhee JR, Kobayashi R et al. Nasal Flt3 ligand cDNA elicits CD11c+CD8+ dendritic cells for enhanced mucosal immunity. J. Immunol.172, 3612–3619 (2004).
  • Lee SE, Kim SY, Jeong BC et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect. Immun.74, 694–702 (2006).
  • Lillard JW Jr, Boyaka PN, Hedrick JA, Zlotnik A, McGhee JR. Lymphotactin acts as an innate mucosal adjuvant. J. Immunol.162, 1959–1965 (1999).
  • Lillard JW Jr, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol.166, 162–169 (2001).
  • Marinaro M, Boyaka PN, Jackson RJ et al. Use of intranasal IL-12 to target predominantly Th1 responses to nasal and Th2 responses to oral vaccines given with cholera toxin. J. Immunol.162, 114–121 (1999).
  • Moldoveanu Z, Love-Homan L, Huang WQ, Krieg AM. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine16, 1216–1224 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.