246
Views
12
CrossRef citations to date
0
Altmetric
Review

Development of vaccines for Marburg hemorrhagic fever

&
Pages 57-74 | Published online: 09 Jan 2014

References

  • Peters CJ, Zaki SR. Overview of viral hemorrhagic fevers. In: Tropical Infectious Diseases: Principles, Pathogens, and Practice. Guerrant Rl, Walker DH, Weller PF (Eds). Churchill Livingstone, PN, USA 726–733 (2006).
  • Bausch DG, Ksiazek TG. Viral hemorrhagic fevers including hantavirus pulmonary syndrome. In: The Americas. Clinics in Laboratory Medicine.22(4), 981–1020, viii (2002).
  • Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat. Med.10(12 Suppl.), S110–S121 (2004).
  • Marty AM, Jahrling PB, Geisbert TW. Viral hemorrhagic fevers. Clin. Lab. Med.26(2), 345–386 (2006).
  • Alibek K, Handelman S. Biohazard: the largest covert biological weapons program. In: The World. Random House, NY, USA (1999).
  • Borio L, Inglesby T, Peters CJ et al. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA287(18), 2391–2405 (2002).
  • Paragas J, Geisbert TW. Development of treatment strategies to combat Ebola and Marburg viruses. Expert Rev. Anti Infect. Ther.4(1), 67–76 (2006).
  • Feldmann H, Jones SM, Schnittler HJ, Geisbert T. Therapy and prophylaxis of Ebola virus infections. Curr. Opin. Investig. Drugs6(8), 823–830 (2005).
  • Geisbert TW, Jahrling PB. Towards a vaccine against Ebola virus. Expert Rev. Vaccines2(6), 777–789 (2003).
  • Feldmann H, Jones S, Klenk HD, Schnittler HJ. Ebola virus: from discovery to vaccine. Nat. Rev. Immunol.3(8), 677–685 (2003).
  • Sullivan N, Yang ZY, Nabel GJ. Ebola virus pathogenesis: implications for vaccines and therapies. J. Virol.77(18), 9733–9737 (2003).
  • Siegert R, Shu HL, Slenczka HL, Peters D, Muller G. The aetiology of an unknown human infection transmitted by monkeys (preliminary communication). Ger. Med. Mon.13(1), 1–2 (1968).
  • Martini GA, Knauff HG, Schmidt HA, Mayer G, Baltzer G. A hitherto unknown infectious disease contracted from monkeys. ‘Marburg-Virus’ Disease. Ger. Med. Mon.13(10), 457–470 (1968).
  • Martini GA. Marburg agent disease: in man. Trans. R. Soc. Trop. Med. Hyg.63(3), 295–302 (1969).
  • Martini G. Marburg virus disease. Clinical syndrome. In: Marburg Virus Disease. Martini G, Siegert R (Eds). Springer-Verlag, NY, USA (1971).
  • Kissling R. Epidemiology of Marburg virus. In: Viruses Affecting Man And Animals. Sanders M (Ed.). Warren H Green Inc., MO, USA, 327–338 (1985).
  • Stille W, Bohle E. Clinical course and prognosis of Marburg virus (‘Green Monkey’) disease. In: Marburg Virus Disease. Martini GA, Siegert R (Eds). Spring-Verlag, NY, USA 10–18 (1971).
  • Todorovitch K, Mocitch M, Klasnja R. Clinical picture of two patients infected by the Marburg vervet virus. In: Marburg Virus Disease. Martini GA, Siegert R (Eds). Springer-Verlag, NY, USA 19–23 (1971).
  • Stojkovic L, Bordjoski M, Gligic A, Stefanovic Z. Two cases of cercopithecus-monkeys-associated haemorrhagic fever. In: Marburg Virus Disease. GA, Siegert R (Eds). Springer-Verlag, NY, USA 24–33 (1971).
  • Slenczka WG. The Marburg virus outbreak of 1967 and subsequent episodes. Curr. Top. Microbiol. Immunol.235, 49–75 (1999).
  • Gear JS, Cassel GA, Gear AJ et al. Outbreak of Marburg virus disease in Johannesburg. Br. Med. J.4(5995), 489–493 (1975).
  • Smith DH, Johnson BK, Isaacson M et al. Marburg-virus disease in Kenya. Lancet1(8276), 816–820 (1982).
  • Johnson ED, Johnson BK, Silverstein D et al. Characterization of a new Marburg virus isolated from a 1987 fatal case in Kenya. Arch. Virol. Suppl.11, 101–114 (1996).
  • Nikiforov VV, Turovskii IuI, Kalinin PP et al. A case of a laboratory infection with Marburg fever (Russian). Zh. Mikrobiol. Epidemiol. Immunobiol.(3), 104–106 (1994).
  • Bausch DG, Nichol ST, Muyemb-Tamfum JJ et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N. Engl. J. Med.355(9), 909–919 (2006).
  • Bausch DG, Borchert M, Grein T et al. Risk factors for Marburg hemorrhagic fever, Democratic Republic of The Congo. Emerg. Infect. Dis.9(12), 1531–1537 (2003).
  • Feldmann H, Kiley MP. Classification, structure, and replication of filoviruses. Curr. Top. Microbiol. Immunol.235, 1–21 (1999).
  • Sanchez A, Trappier SG, Stroher U, Nichol ST, Bowen MD, Feldmann H. Variation in the glycoprotein and Vp35 genes of Marburg virus strains. Virology240(1), 138–146 (1998).
  • Towner JS, Khristova ML, Sealy TK et al. Marburg virus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol.80(13), 6497–6516 (2006).
  • Muhlberger E, Lotfering B, Klenk HD, Becker S. Three of the four nucleocapsid proteins of Marburg virus, Np, vp35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J. Virol.72(11), 8756–8764 (1998).
  • Fowler T, Bamberg S, Moller P et al. Inhibition of Marburg virus protein expression and viral release by RNA interference. J. Gen. Virol.86(4), 1181–1188 (2005).
  • Jasenosky LD, Kawaoka Y. Filovirus budding. Virus Res.106(2), 181–188 (2004).
  • Swenson DL, Warfield KL, Kuehl K et al. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS. Immunol. Med. Microbiol.40(1), 27–31 (2004).
  • Bamberg S, Kolesnikova L, Moller P, Klenk HD, Becker S. Vp24 of Marburg virus influences formation of infectious particles. J. Virol.79(21), 13421–13433 (2005).
  • Basler CF, Wang X, Muhlberger E et al. The Ebola virus Vp35 protein functions as a type I IFN antagonist. Proc. Natl Acad. Sci. USA97(22), 12289–12294 (2000).
  • Reid SP, Leung LW, Hartman AL et al.. Ebola virus Vp24 binds karyopherin α 1 and blocks STAT1 nuclear accumulation. J. Virol.80(11), 5156–5167 (2006).
  • Grosch M, Kash JC, Muhlberger E. Interference of Marburg and Ebola viruses with the type I Ifn response: induction and signaling. Abstract No. 160. XIIIth International Conference On Negative Strand Viruses. Salamanca, Spain (2006).
  • Feldmann H, Will C, Schikore M, Slenczka W, Klenk HD. Glycosylation and oligomerization of the spike protein of Marburg virus. Virology182(1), 353–356 (1991).
  • Volchkov VE, Volchkova VA, Stroher U et al .Proteolytic processing of Marburg virus glycoprotein. Virology268(1), 1–6 (2000).
  • Kuhn JH, Radoshitzky SR, Guth AC et al. Conserved receptor-binding domains of Lake Victoria Marburgvirus and Zaire Ebola virus bind a common receptor. J. Biol. Chem.281(23), 15951–15958 (2006).
  • Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J. Virol.74(10), 4933–4937 (2000).
  • Chan SY, Empig CJ, Welte FJ et al. Folate receptor-α is a cofactor for cellular entry by Marburg and Ebola viruses. Cell106(1), 117–126 (2001).
  • Simmons G, Reeves JD, Grogan CC et al. DC-SIGN and DC-SIGNR bind Ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology305(1), 115–123 (2003).
  • Marzi A, Gramberg T, Simmons G et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol.78(21), 12090–12095 (2004).
  • Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature408(6812), 605–609 (2000).
  • Sullivan NJ, Geisbert TW, Geisbert JB et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature424(6949), 681–684 (2003).
  • Sullivan NJ, Geisbert TW, Geisbert JB et al. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified Gps. PLOS. Med.3(6), E177 (2006).
  • Gedigk P, Bechtelsheimer H, Korb G. The morbid anatomy of Marburg virus disease. Ger. Med. Mon.14(2), 68–77 Passim (1969).
  • Geisbert TW, Jaax NK. Marburg hemorrhagic fever: report of a case studied by immunohistochemistry and electron microscopy. Ultrastruct. Pathol.22(1), 3–17 (1998).
  • Murphy F, Van Der Groen G, Whitfield S, Lange J. Ebola and Marburg virus morphology and taxonomy. In: Ebola Haemorrhagic Fever. Pattyn S (Ed.). North-Holland Biomedical Press, The Netherlands 61–82 (1978).
  • Schnittler HJ, Mahner F, Drenckhahn D, Klenk HD, Feldmann H. Replication of marburg virus in human endothelial cells. A possible mechanism for the development of viral hemorrhagic disease. J. Clin. Invest.91(4), 1301–1309 (1993).
  • Bosio CM, Moore BD, Warfield KL et al. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology326(2), 280–287 (2004).
  • Bosio CM, Aman MJ, Grogan C et al. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J. Infect. Dis.188(11), 1630–1638 (2003).
  • Zaki SR, Goldsmith CS. Pathologic features of filovirus infections in humans. Curr. Top. Microbiol. Immunol.235, 97–116 (1999).
  • Feldmann H, Bugany H, Mahner F, Klenk HD, Drenckhahn D, Schnittler HJ. Filovirus-induced endothelial leakage triggered by infected monocytes/ macrophages. J. Virol.70(4), 2208–2214 (1996).
  • Stroher U, West E, Bugany H, Klenk HD, Schnittler HJ, Feldmann H. Infection and activation of monocytes by Marburg and Ebola viruses. J. Virol.75(22), 11025–11033 (2001).
  • Schnittler HJ, Feldmann H. Molecular pathogenesis of Filovirus infections: role of macrophages and endothelial cells. Curr. Top. Microbiol. Immunol.235, 175–204 (1999).
  • Schnittler HJ, Feldmann H. Marburg and Ebola hemorrhagic fevers: does the primary course of infection depend on the accessibility of organ-specific macrophages? Clin. Infect. Dis.27(2), 404–406 (1998).
  • Egbring R, Slenczka W, Baltzer G. Clinical manifestations and mechanism of the haemorrhagic diathesis in Marburg virus disease. In: Marburg Virus Disease. Martini GA, Siegert R (Eds). Springer-Verlag, NY, USA 42–49 (1971).
  • Becker S, Spiess M, Klenk HD. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J. Gen. Virol.76(Pt 2), 393–399 (1995).
  • Ignat’ev GM, Strel’tsova MA, Kashentseva EA, Patrushev NA. Effects of tumor necrosis factor antiserum on the course of Marburg hemorrhagic fever. Vestn. Ross. Akad. Med. Nauk.(3), 35–38 (1998).
  • Ignat’ev GM, Strel’tsova MA, Kashentseva EA. Induction of immunemediators in human cultured mononuclear cells by Marburg virus. Vopr. Virusol.43(4), 169–173 (1998).
  • Ignat’ev GM, Agafonov AP, Strel’tsova MA et al. A comparative study of the immunological indices in guinea pigs administered an inactivated Marburg virus. Vopr. Virusol.36(5), 421–423 (1991).
  • Villinger F, Rollin PE, Brar SS et al. Markedly elevated levels of interferon (IFN)-γ, IFN-α, Interleukin (IL)-2, IL-10, and tumor necrosis factor-α associated with fatal Ebola virus infection. J. Infect. Dis.179(Suppl. 1), S188–S191 (1999).
  • Almeida JD, Waterson AP, Simpson DIH. Morphology and morphogenesis of the Marburg agent. In: Marburg Virus Disease. Martini GA, Siegert R (Eds). Springer-Verlag, NY, USA 84–97 (1971).
  • Bwaka MA, Bonnet MJ, Calain P et al. Ebola hemorrhagic fever in Kikwit, Democratic Republic of The Congo: clinical observations in 103 patients. J. Infect. Dis.179(Suppl. 1), S1–S7 (1999).
  • Anonymous. Ebola haemorrhagic fever in Sudan, 1976. Report of a WHO/ International Study Team. Bull. World Health Organ.56(2), 247–270 (1978).
  • Pattyn S, van der Groen G, Courteille G, Jacob W, Piot P. Isolation of Marburg-like virus from a case of haemorrhagic fever in Zaire. Lancet1(8011), 573–574 (1977).
  • Ryabchikova E, Strelets L, Kolesnikova L, Pyankov O, Sergeev A. respiratory Marburg virus infection in guinea pigs. Arch. Virol.141(11), 2177–2190 (1996).
  • Geisbert TW, Daddario-Dicaprio KM, Geisbert JB et al. Development of postexposure treatments for Ebola and Marburg hemorrhagic fevers. In: Filoviruses: Recent Advances and Future Challenges. Winnipeg, Canada (2006).
  • Simpson DI, Zlotnik I, Rutter DA. Vervet monkey disease. Experiment infection of guinea pigs and monkeys with the causative agent. Br. J. Exp. Pathol.49(5), 458–464 (1968).
  • Agafonov AP, Ignat’ev GM, Kuz’min VA, Akimenko ZL, Kosareva TV, Kashentseva EA. Immunogenic properties of Marburg virus proteins. Vopr. Virusol.1, 58–61 (1992).
  • Ignat’ev GM, Strel’tsova MA, Agafonov AP, Zhukova NA, Kashentseva EA, Vorob’eva MS. The immunity indices of animals immunized with the inactivated Marburg virus after infection with homologous virus. Vopr. Virusol.39(1), 13–17 (1994).
  • Donchenko VV, Lebedev VN, Markin VA, Firsova IV. Effectiveness of virus-specific proteins in immunogenesis during experimental Marburg fever. Vopr. Virusol.41(5), 216–218 (1996).
  • Hevey M, Negley D, Geisbert J, Jahrling PB, Schmaljohn A. Recombinant Marburg virus glycoprotein subunit vaccine protects guinea pigs from lethal infection. In: Vaccines 97: Molecular Approaches to the Control of Infectious Diseases. Brown F, Burton DR, Doherty P, Mekalanos J, Norrby E (Eds). Cold Spring Harbor Laboratory Press, NY, USA 93–98 (1997).
  • Hevey M, Negley D, Pushko P, Smith J, Schmaljohn A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology251(1), 28–37 (1998).
  • Hevey M, Negley D, Vanderzanden L et al. Marburg virus vaccines: comparing classical and new approaches. Vaccine20(3–4), 586–593 (2001).
  • Riemenschneider J, Garrison A, Geisbert J et al. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine21(25–26), 4071–4080 (2003).
  • Warfield KL, Swenson DL, Negley DL, Schmaljohn AL, Aman MJ, Bavari S. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine22(25–26), 3495–3502 (2004).
  • Swenson DL, Warfield KL, Negley DL, Schmaljohn A, Aman MJ, Bavari S. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine23(23), 3033–3042 (2005).
  • Wang D, Hevey M, Juompan LY et al. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges. Virology353(2), 324–332 (2006).
  • Simpson DIH, Bowen ETW, Bright WF. Vervet monkey disease: experimental infection of monkeys with the causative agent, and antibody studies in wild-caught monkeys. Lab. Anim.2, 75–81 (1968).
  • Simpson DI. Marburg agent disease: in monkeys. Trans. R. Soc. Trop. Med. Hyg.63(3), 303–309 (1969).
  • Haas R, Maass G. Experimental infection of monkeys with the Marburg virus. In: Marburg Virus Disease. Martini GA, Siegert R (Eds). Springer-Verlag, NY, USA 136–143 (1971).
  • Oehlert W. The morphological picture in livers, spleens, and lymph nodes of monkeys and guinea pigs after infection with the ‘vervet agent’. In: Marburg Virus Disease. Martini G, Siegert R (Eds). Springer-Verlag, NY, USA 144–156 (1971).
  • Murphy FA, Simpson DI, Whitfield SG, Zlotnik I, Carter GB. Marburg virus infection in monkeys. ultrastructural studies. Lab. Invest.24(4), 279–291 (1971).
  • Jones SM, Feldmann H, Stroher U et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med.11(7), 786–790 (2005).
  • Daddario-Dicaprio KM, Geisbert TW, Stroher U et al. Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. Lancet367(9520), 1399–1404 (2006).
  • Daddario-Dicaprio KM, Geisbert TW, Geisbert JB et al. Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. J. Virol.80(19), 9659–9666 (2006).
  • Gonchar NI, Pshenichnov VA, Pokhodiaev VA, Lopatov KL, Firsova IV. The sensitivity of different experimental animals to the Marburg virus. Vopr. Virusol.36(5), 435–437 (1991).
  • Spiridonov VA, Bazhutin NB, Belanov EF et al. Changes in the blood serum aminotransferase activity in the experimental infection of Cercopithecus aethiops monkeys with the Marburg virus. Vopr. Virusol.37(3), 156–157 (1992).
  • Zlotnik I. Marburg agent disease: pathology. Trans. R. Soc. Trop. Med. Hyg.63(3), 310–327 (1969).
  • Geisbert TW, Hensley LE, Gibb TR, Steele KE, Jaax NK, Jahrling PB. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab. Invest.80(2), 171–186 (2000).
  • Peters CJ, Sanchez A, Feldmann H, Rollin PE, Nichol S, Ksiazek TG. Filoviruses as emerging pathogens. Semin. Virol.5(2), 147–154 (1994).
  • Chepurnov AA, Tuzova MN, Ternovoy VA, Chernukhin IV. Suppressive effect of Ebola virus on T cell proliferation in vitro is provided by a 125-kDa gp viral protein. Immunol. Lett.68(2–3), 257–261 (1999).
  • Nabel GJ. Surviving Ebola virus infection. Nat. Med.5(4), 373–374 (1999).
  • Jahrling PB, Geisbert TW, Geisbert JB et al. Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental Ebola virus infections. J. Infect. Dis.179(Suppl. 1), S224–S234 (1999).
  • Jahrling PB, Geisbert J, Swearengen JR et al. Passive immunization of Ebola virus-infected cynomolgus monkeys with immunoglobulin from hyperimmune horses. Arch. Virol. Suppl.11, 135–140 (1996).
  • Ksiazek TG, West CP, Rollin PE, Jahrling PB, Peters CJ. Elisa for the detection of antibodies to Ebola viruses. J. Infect. Dis.179(Suppl. 1), S192–S198 (1999).
  • Ksiazek TG, Rollin PE, Williams AJ et al. Clinical virology of Ebola hemorrhagic fever (Ehf): virus, virus antigen, and IgG and IgM antibody findings among Ehf patients in Kikwit, Democratic Republic of The Congo, 1995. J. Infect. Dis.179(Suppl. 1), S177–S187 (1999).
  • Sanchez A, Ksiazek TG, Rollin PE et al. Detection and molecular characterization of Ebola viruses causing disease in human and nonhuman primates. J. Infect. Dis.179(Suppl. 1), S164–S169 (1999).
  • Zaki SR, Shieh WJ, Greer PW et al. A novel immunohistochemical assay for the detection of Ebola virus in skin: implications for diagnosis, spread, and surveillance of Ebola hemorrhagic fever. Commission de Lutte Contre les Epidemies a Kikwit. J. Infect. Dis.179(Suppl. 1), S36–S47 (1999).
  • Grolla A, Lucht A, Dick D, Strong JE, Feldmann H. Laboratory diagnosis of Ebola and Marburg hemorrhagic fever. Bull. Soc. Pathol. Exot.98(3), 205–209 (2005).
  • Mupapa K, Massamba M, Kibadi K et al. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International Scientific and Technical Committee. J. Infect. Dis.179(Suppl. 1), S18–S23 (1999).
  • Borisevich IV, Mikhailov VV, Krasnianskii VP et al. [Development and study of the properties of immunoglobulin against Ebola fever]. Vopr. Virusol.40(6), 270–273 (1995).
  • Geisbert TW, Hensley LE, Jahrling PB et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet362(9400), 1953–1958 (2003).
  • Boumandouki P, Formenty P, Epelboin A et al. Clinical management of patients and deceased during the Ebola outbreak from October to December 2003 in Republic of Congo. Bull. Soc. Pathol. Exot.98(3), 218–223 (2005).
  • Hewlett BS, Amola RP. Cultural contexts of Ebola in northern Uganda. Emerg. Infect. Dis.9(10), 1242–1248 (2003).
  • Hevey M, Negley D, Geisbert J, Jahrling P, Schmaljohn A. Antigenicity and vaccine potential of Marburg virus glycoprotein expressed by baculovirus recombinants. Virology239(1), 206–216 (1997).
  • Ignatyev GM, Agafonov AP, Streltsova MA, Kashentseva EA. Inactivated Marburg virus elicits a nonprotective immune response in rhesus monkeys. J. Biotechnol.44(1–3), 111–118 (1996).
  • Agafonova OA, Viazunov SA, Zhukov VA et al. Relationship between the level of specific antibodies with disease outcome in cercopithecus aethiops monkeys in experimental Marburg disease. Vopr. Virusol.42(3), 109–111 (1997).
  • Ignat’ev GM, Strel’tsova MA, Agafonov AP, Kashentseva EA. Mechanisms of protective immune response in models of Marburg fever in monkeys. Vopr. Virusol.40(3), 109–113 (1995).
  • Becker S, Volchkov VE, Muhleberger E, Al E. A recombinant vaccinia virus expressing the surface glycoprotein of Marburg virus does not protect guinea pigs against Marburg virus-infection. In: Xth International Congress of Virology. Jerusalem, Israel (1996)
  • Sanger C, Muhlberger E, Klenk HD, Becker S. Adverse effects of Mva-T7 on the transport of Marburg virus glycoprotein. J. Virol. Methods91(1), 29–35 (2001).
  • Amorosa VK, Isaacs SN. Separate worlds set to collide: smallpox, vaccinia virus vaccination, and human immunodeficiency virus and acquired immunodeficiency syndrome. Clin. Infect. Dis.37(3), 426–432 (2003).
  • Schlesinger S. Alphavirus vectors: development and potential therapeutic applications. Expert Opin. Biol. Ther.1(2), 177–191 (2001).
  • Lundstrom K. Alphavirus vectors for vaccine production and gene therapy. Expert Rev. Vaccines2(3), 447–459 (2003).
  • Hevey M, Negley D, Staley A, Schmaljohn A. Determination of vaccine components required for protecting cynomolgus macaques against genotypically divergent isolates of Marburg virus. Abstract No. W36–4. In: 20th Annual Meeting of The American Society For Virology. WI, USA (2001)
  • Sullivan N. Elements of vaccine-induced protective immunity against filovirus infection. In: Filoviruses: Recent Advances And Future Challenges. Winnipeg, Canada (2006).
  • Noda T, Sagara H, Suzuki E, Takada A, Kida H, Kawaoka Y. Ebola virus Vp40 drives the formation of virus-like filamentous particles along with Gp. J. Virol.76(10), 4855–4865 (2002).
  • Licata JM, Johnson RF, Han Z, Harty RN. Contribution of Ebola virus glycoprotein, nucleoprotein, and Vp24 to budding of Vp40 virus-like particles. J. Virol.78(14), 7344–7351 (2004).
  • Warfield KL, Swenson DL, Olinger GG, Aman MJ, Bavari S. Virus-like particle-based vaccines protect nonhuman primates against lethal Ebola virus infection. In: Filoviruses: Recent Advances And Future Challenges. Winnipeg, Canada (2006)
  • Pattenden LK, Middelberg AP, Niebert M, Lipin DI. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol.23(10), 523–529 (2005).
  • Lehrman S. Virus treatment questioned after gene therapy death. Nature401(6753), 517–518 (1999).
  • Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol. Ther.10(4), 616–629 (2004).
  • Boyer JL, Kobinger G, Wilson JM, Crystal RG. Adenovirus-based genetic vaccines for biodefense. Hum. Gene. Ther.16(2), 157–168 (2005).
  • Hitt MM, Gauldie J. Gene vectors for cytokine expression in vivo. Curr. Pharm. Des.6(6), 613–632 (2000).
  • Kobinger G. Circumventing the presence of pre-existing immunity to adenovirus vaccine vector with new serotypes or immunization strategies. In: Filoviruses: Recent Advances and Future Challenges. Winnipeg, Canada (2006).
  • Schulick AH, Vassalli G, Dunn PF et al. Established immunity precludes adenovirus-mediated gene transfer in rat carotid arteries. Potential for immunosuppression and vector engineering to overcome barriers of immunity. J. Clin. Invest.99(2), 209–219 (1997).
  • Piedra PA, Poveda GA, Ramsey B, Mccoy K, Hiatt PW. Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: implication for gene therapy with adenovirus vectors. Pediatrics101(6), 1013–1019 (1998).
  • Barouch DH, Pau MG, Custers JH et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol.172(10), 6290–6297 (2004).
  • Kobinger GP, Feldmann H, Zhi Y et al. Chimpanzee adenovirus vaccine protects against Zaire Ebola virus. Virology346(2), 394–401 (2006).
  • Murakami P, Pungor E, Files J et al. A single short stretch of homology between adenoviral vector and packaging cell line can give rise to cytopathic effect-inducing, helper-dependent E1-positive particles. Hum. Gene. Ther.13(8), 909–920 (2002).
  • Fallaux FJ, Bout A, van der Velde I et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum. Gene. Ther.9(13), 1909–1917 (1998).
  • Roberts A, Buonocore L, Price R, Forman J, Rose JK. Attenuated vesicular stomatitis viruses as vaccine vectors. J. Virol.73(5), 3723–3732 (1999).
  • Rose NF, Roberts A, Buonocore L, Rose JK. Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J. Virol.74(23), 10903–10910 (2000).
  • Rose NF, Marx PA, Luckay A et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell106(5), 539–549 (2001).
  • Zinkernagel RM, Althage A, Holland J. Target antigens for H-2-restricted vesicular stomatitis virus-specific cytotoxic T cells. J. Immunol.121(2), 744–748 (1978).
  • Zinkernagel RM, Adler B, Holland JJ. Cell-mediated immunity to vesicular stomatitis virus infections in mice. Exp. Cell. Biol.46(1–2), 53–70 (1978).
  • Fehr T, Bachmann MF, Bluethmann H, Kikutani H, Hengartner H, Zinkernagel RM. T-independent activation of B cells by vesicular stomatitis virus: no evidence for the need of a second signal. Cell Immunol.168(2), 184–192 (1996).
  • Reif JS, Webb PA, Monath TP et al. Epizootic vesicular stomatitis in Colorado, 1982: infection in occupational risk groups. Am. J. Trop. Med. Hyg.36(1), 177–182 (1987).
  • Gaidamovich S, Uvarov VN, Alekseeva AA. Isolation of vesicular stomatitis virus from a patient. Vopr. Virusol.11(1), 77–80 (1966).
  • Quiroz E, Moreno N, Peralta PH, Tesh RB. A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am. J. Trop. Med. Hyg.39(3), 312–314 (1988).
  • Johnson JE, Nasar F, Coleman JW et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology (2006).
  • Martinez I, Rodriguez LL, Jimenez C, Pauszek SJ, Wertz GW. Vesicular stomatitis virus glycoprotein is a determinant of pathogenesis in swine, a natural host. J. Virol.77(14), 8039–8047 (2003).
  • Daddario-Dicaprio KM, Geisbert TW, Stroher U et al. Postexposure protection against Marburg hemorrhagic fever with a recombinant vaccine in nonhuman primates; how does it work? In: Filoviruses: Recent Advances and Future Challenges. Winnipeg, Canada (2006).
  • Tesh RB, Johnson KM. Vesicular stomatitis. In: Diseases Transmitted From Animals to Man. Hubbert WT, Mccolloch WF, Schnurrenberger PR (Eds). CC Thomas, IL, USA 897–910 (1975).
  • Hanson RP. The natural history of vesicular stomatitis. Bacteriol. Rev.16(3), 179–204 (1952).
  • Slate D, Rupprecht CE, Rooney JA, Donovan D, Lein DH, Chipman RB. Status of oral rabies vaccination in wild carnivores in the United States. Virus Res.111(1), 68–76 (2005).
  • Publicover J, Ramsburg E, Rose JK. A single-cycle vaccine vector based on vesicular stomatitis virus can induce immune responses comparable to those generated by a replication-competent vector. J. Virol.79(21), 13231–13238 (2005).
  • Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature441(7090), 239–243 (2006).
  • Yang ZY, Wyatt LS, Kong WP, Moodie Z, Moss B, Nabel GJ. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol.77(1), 799–803 (2003).
  • Martin JE, Sullivan NJ, Enama ME et al. A DNA vaccine for Ebola virus is safe and immunogenic in a Phase I clinical trial. Clin. Vaccine Immunol. (2006).
  • Enterlein S, Volchkov V, Weik M et al. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein Vp30. J. Virol.80(2), 1038–1043 (2006).
  • Feldmann H. Reverse genetics systems for high-containment viruses: development and potential use. In: Rational Design of Vaccines and Immunotherapeutics. Bioterrorism and Emerging Infectious Diseases: Antimicrobials, Therapeutics and Immune-Modulators (Joint Conference). Keystone Symposia, Keystone, CO, USA 92 (2004).
  • Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch. Virol. Suppl.11, 77–100 (1996).
  • Sanchez A, Khan AS, Zaki SR, Nabel GJ, Ksiazek TG, Peters CJ. Filoviridae: Marburg and Ebola viruses. In: Fields’ Virology. Knipe DM, Howley PM (Eds). Lippincott Williams & Wilkins, PN, USA 1279–1304 (2001).

Websites

  • International Society for Infectious Diseases. Marburg hemorrhagic fever - Angola (54). November 8, 2005 (Archive Number 20051108.3269). www.promedmail.org/pls/promed/f?p=2400:1202:11140518546906586706::NO::F2400_P1202_CHECK_DISPLAY,F2400_P1202_PUB_MAIL_ID:X,30997.
  • Merck. HPV vaccine study. www.hpvvaccinetrials.com/secure/ index.html.
  • Crucell. Available at: www.Crucell.com.
  • Department of Health and Human Services. Food and Drug Administration. 21 CFR Parts 314 and 601 [Docket No. 98N-0237] RIN 0910-AC05. New Drug and Biological Drug Products; Evidence Needed to Demonstrate Effectiveness of New Drugs When Human Efficacy Studies Are Not Ethical or Feasible. www.fda.gov/cber/rules/humeffic.pdf.
  • Wyeth. Vaccine Discovery and Development. www.wyeth.com/irj/portal?Navigation Target=navurl://947b8a5be07500781eb1866ac1208170&LightDTNKnobID=1953100796.
  • International AIDS Vaccine Initiative Report. VSV vector nears testing in human trials. www.iavireport.org/Issues/Issue9-4/promise.asp.
  • Vical Company. Our Non-Viral DNA Delivery Technology. www.vical.com/company/dnatech.htm.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.