78
Views
11
CrossRef citations to date
0
Altmetric
Review

Murine models for HIV vaccination and challenge

, , , , &
Pages 117-130 | Published online: 09 Jan 2014

References

  • Alter HJ, Eichberg JW, Masur H et al. Transmission of HTLV-III infection from human plasma to chimpanzees: an animal model for AIDS. Science226(4674), 549–552 (1984).
  • Rutjens E, Balla-Jhagjhoorsingh S, Verschoor E, Bogers W, Koopman G, Heeney J. Lentivirus infections and mechanisms of disease resistance in chimpanzees. Front Biosci.8, d1134–d1145 (2003).
  • Gardner MB. SIV infection of macaques: a model for AIDS vaccine development. Dev. Biol. Stand.72, 259–266 (1990).
  • Putkonen P, Bjorling E, Akerblom L et al. Long-standing protection of macaques against cell-free HIV-2 with a HIV-2 iscom vaccine. J. Acquir. Immune Defic. Syndr.7(6), 551–559 (1994).
  • Putkonen P, Thorstensson R, Ghavamzadeh L et al. Prevention of HIV-2 and SIVsm infection by passive immunization in cynomolgus monkeys. Nature352(6334), 436–438 (1991).
  • Li J, Lord CI, Haseltine W, Letvin NL, Sodroski J. Infection of cynomolgus monkeys with a chimeric HIV-1/SIVmac virus that expresses the HIV-1 envelope glycoproteins. J. Acquir. Immune Defic. Syndr.5(7), 639–646 (1992).
  • Joag SV, Li Z, Foresman L et al. Chimeric simian/human immunodeficiency virus that causes progressive loss of CD4+ T cells and AIDS in pig-tailed macaques. J. Virol.70(5), 3189–3197 (1996).
  • Etemad-Moghadam B, Rhone D, Steenbeke T et al. Membrane-fusing capacity of the human immunodeficiency virus envelope proteins determines the efficiency of CD+ T-cell depletion in macaques infected by a simian-human immunodeficiency virus. J. Virol.75(12), 5646–5655 (2001).
  • Reimann KA, Li JT, Veazey R et al. A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J. Virol.70(10), 6922–6928 (1996).
  • Warren JT, Levinson MA. AIDS preclinical vaccine development: biennial survey of HIV, SIV, and SHIV challenge studies in vaccinated nonhuman primates. J. Med. Primatol.28(4–5), 249–273 (1999).
  • Benson J, Chougnet C, Robert-Guroff M et al. Recombinant vaccine-induced protection against the highly pathogenic simian immunodeficiency virus SIV(mac251): dependence on route of challenge exposure. J. Virol.72(5), 4170–4182 (1998).
  • Desrosiers RC. Non-human primate models for AIDS vaccines. AIDS9(Suppl. A), S137–S141 (1995).
  • Podell M, March PA, Buck WR, Mathes LE. The feline model of neuroAIDS: understanding the progression towards AIDS dementia. J. Psychopharmacol.14(3), 205–213 (2000).
  • Dunham SP. Lessons from the cat: development of vaccines against lentiviruses. Vet Immunol. Immunopathol.112(1–2), 67–77 (2006).
  • Goffinet C, Allespach I, Keppler OT. HIV-susceptible transgenic rats allow rapid preclinical testing of antiviral compounds targeting virus entry or reverse transcription. Proc. Natl Acad. Sci. USA104(3), 1015–1020 (2007).
  • Leonard JM, Abramczuk JW, Pezen DS et al. Development of disease and virus recovery in transgenic mice containing HIV proviral DNA. Science242(4886), 1665–1670 (1988).
  • van Maanen M, Sutton RE. Rodent models for HIV-1 infection and disease. Curr. HIV Res.1(1), 121–130 (2003).
  • Browning J, Horner JW, Pettoello-Mantovani M et al. Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proc. Natl Acad. Sci. USA94(26), 14637–14641 (1997).
  • Mariani R, Rutter G, Harris ME, Hope TJ, Krausslich HG, Landau NR. A block to human immunodeficiency virus type 1 assembly in murine cells. J. Virol.74(8), 3859–3870 (2000).
  • Liang C, Wainberg MA. The role of Tat in HIV-1 replication: an activator and/or a suppressor? AIDS Rev.4(1), 41–49 (2002).
  • Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J.17(23), 7056–7065 (1998).
  • Zheng YH, Yu HF, Peterlin BM. Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells. Nat. Cell Biol.5(7), 611–618 (2003).
  • Schröfelbauer B, Chen D, Landau NR. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl Acad. Sci. USA101(11), 3927–3932 (2004).
  • Sorin M, Kalpana GV. Dynamics of virus–host interplay in HIV-1 replication. Curr. HIV Res.4(2), 117–130 (2006).
  • Goff SP. Retrovirus restriction factors. Mol. Cell16(6), 849 (2004).
  • Goff SP. Genetic control of retrovirus susceptibility in mammalian cells. Annu. Rev. Genet.38, 61–85 (2004).
  • Schutten M, Tenner-Racz K, Racz P, van Bekkum DW, Osterhaus AD. Human antibodies that neutralize primary human immunodeficiency virus type 1 in vitro do not provide protection in an in vivo model. J. Gen. Virol.77 (Pt 8), 1667–1675 (1996).
  • Marcus H, David M, Canaan A et al. Human/mouse radiation chimera are capable of mounting a human primary humoral response. Blood86(1), 398–406 (1995).
  • Segall H, Lubin I, Marcus H, Canaan A, Reisner Y. Generation of primary antigen-specific human cytotoxic T lymphocytes in human/mouse radiation chimera. Blood88(2), 721–730 (1996).
  • McCune JM. SCID mice as immune system models. Curr. Opin. Immunol.3(2), 224–228 (1991).
  • McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science241(4873), 1632–1639 (1988).
  • Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature335(6187), 256–259 (1988).
  • Schuler W, Schuler A, Bosma MJ. Defective V-to-J recombination of T cell receptor γ chain genes in scid mice. Eur. J. Immunol.20(3), 545–550 (1990).
  • Boyle MJ, Connors M, Flanigan ME et al. The human HIV/peripheral blood lymphocyte (PBL)-SCID mouse. A modified human PBL-SCID model for the study of HIV pathogenesis and therapy. J. Immunol.154(12), 6612–6623 (1995).
  • Tary-Lehmann M, Saxon A, Lehmann PV. The human immune system in hu-PBL-SCID mice. Immunol. Today16(11), 529–533 (1995).
  • Bonyhadi ML, Kaneshima H. The SCID-hu mouse: an in vivo model for HIV-1 infection in humans. Mol. Med. Today3(6), 246–253 (1997).
  • McCune JM. Development and applications of the SCID-hu mouse model. Semin. Immunol.8(4), 187–196 (1996).
  • McCune JM, Peault B, Streeter PR, Rabin L. Preclinical evaluation of human hematolymphoid function in the SCID-hu mouse. Immunol. Rev.124, 45–62 (1991).
  • McCune JM, Namikawa R, Shih CC, Rabin L, Kaneshima H. Suppression of HIV infection in AZT-treated SCID-hu mice. Science247(4942), 564–566 (1990).
  • Mosier DE, Picchio GR, Gulizia RJ et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J. Virol.73(5), 3544–3550 (1999).
  • Borkow G. Mouse models for HIV-1 infection. IUBMB Life57(12), 819–823 (2005).
  • Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-γc-/- (RAG-hu) mouse model. Retrovirology3, 76 (2006).
  • Delhem N, Hadida F, Gorochov G et al. Primary Th1 cell immunization against HIVgp160 in SCID-hu mice coengrafted with peripheral blood lymphocytes and skin. J. Immunol.161(4), 2060–2069 (1998).
  • Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ. Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor γ chain. Br. J. Haematol.103(2), 335–342 (1998).
  • Hiramatsu H, Nishikomori R, Heike T et al. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/γcnull mice model. Blood102(3), 873–880 (2003).
  • Traggiai E, Chicha L, Mazzucchelli L et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science304(5667), 104–107 (2004).
  • An DS, Poon B, Fang RHT et al. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin. Vaccine Immunol.14(4), 391–396 (2007).
  • Chicha L, Tussiwand R, Traggiai E et al. Human adaptive immune system Rag2-/-γ(c)-/- mice. Ann. NY Acad. Sci.1044, 236–243 (2005).
  • Zhang L, Kovalev GI, Su L. HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood109(7), 2978–2981 (2007).
  • Mazurier F, Fontanellas A, Salesse S et al. A novel immunodeficient mouse model – RAG2 x common cytokine receptor γ chain double mutants – requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J. Interferon Cytokine Res.19(5), 533–541 (1999).
  • Baenziger S, Tussiwand R, Schlaepfer E et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-γ c-/- mice. Proc. Natl Acad. Sci. USA103(43), 15951–15956 (2006).
  • Ayash-Rashkovsky M, Bentwich Z, Arditti F, Friedman S, Reisner Y, Borkow G. A novel small animal model for HIV-1 infection. FASEB J.19(9), 1149–1151 (2005).
  • Ayash-Rashkovsky M, Borkow G, Davis HL, Moss RB, Bartholomew R, Bentwich Z. Enhanced HIV-1 specific immune response by CpG ODN and HIV-1 immunogen-pulsed dendritic cells confers protection in the Trimera murine model of HIV-1 infection. FASEB J.19(9), 1152–1154 (2005).
  • Lubin I, Faktorowich Y, Lapidot T et al. Engraftment and development of human T and B cells in mice after bone marrow transplantation. Science252(5004), 427–431 (1991).
  • Lubin I, Segall H, Marcus H et al. Engraftment of human peripheral blood lymphocytes in normal strains of mice. Blood83(8), 2368–2381 (1994).
  • Garcia S, Dadaglio G, Gougeon ML. Limits of the human-PBL-SCID mice model: severe restriction of the V β T-cell repertoire of engrafted human T cells. Blood89(1), 329–336 (1997).
  • Saxon A, Macy E, Denis K, Tary-Lehmann M, Witte O, Braun J. Limited B cell repertoire in severe combined immunodeficient mice engrafted with peripheral blood mononuclear cells derived from immunodeficient or normal humans. J. Clin. Invest.87(2), 658–665 (1991).
  • Klotman PE, Notkins AL. Transgenic models of human immunodeficiency virus type-1. Curr. Top. Microbiol. Immunol.206, 197–222 (1996).
  • Brady HJ, Pennington DJ, Dzierzak EA. Transgenic mice as models of human immunodeficiency virus expression and related cellular effects. J. Gen. Virol.75(Pt 10), 2549–2558 (1994).
  • Kopp JB, Rooney JF, Wohlenberg C et al. Cutaneous disorders and viral gene expression in HIV-1 transgenic mice. AIDS Res. Hum. Retroviruses9(3), 267–275 (1993).
  • Lewis W. Use of the transgenic mouse in models of AIDS cardiomyopathy. AIDS17(Suppl. 1), S36–S45 (2003).
  • Lu TC, He JC, Klotman P. Animal models of HIV-associated nephropathy. Curr. Opin. Nephrol. Hypertens.15(3), 233–237 (2006).
  • Besnier C, Takeuchi Y, Towers G. Restriction of lentivirus in monkeys. Proc. Natl Acad. Sci. USA99(18), 11920–11925 (2002).
  • Demma LJ, Vanderford TH, Logsdon JM Jr, Feinberg MB, Staprans SI. Evolution of the uniquely adaptable lentiviral envelope in a natural reservoir host. Retrovirology3, 19 (2006).
  • Hinkula J, Rollman E, Lundholm P, Benthin R, Okuda K, Wahren B. Genetic immunization with multiple HIV-1 genes provides protection against HIV-1/MuLV pseudovirus challenge in vivo. Cells Tissues Organs177(3), 169–184 (2004).
  • Potash MJ, Chao W, Bentsman G et al. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc. Natl Acad. Sci. USA102(10), 3760–3765 (2005).
  • Bacsi A, Ebbesen P, Szabo J et al. Pseudotypes of vesicular stomatitis virus-bearing envelope antigens of certain HIV-1 strains permissively infect human syncytiotrophoblasts cultured in vitro: implications for in vivo infection of syncytiotrophoblasts by cell-free HIV-1. J. Med. Virol.64(4), 387–397 (2001).
  • Brave A, Ljungberg K, Wahren B, Liu MA. Vaccine delivery methods using viral vectors. Mol Pharm,4(1), 18–32 (2007).
  • Okazaki T, Pendleton CD, Lemonnier F, Berzofsky JA. Epitope-enhanced conserved HIV-1 peptide protects HLA-A2-transgenic mice against virus expressing HIV-1 antigen. J. Immunol.171(5), 2548–2555 (2003).
  • Shinoda K, Xin KQ, Okuda K. A modified HIV challenge assay in mice by using luciferase-expressing vaccinia virus. Vaccine24(15), 2751–2754 (2006).
  • Takahashi H, Cohen J, Hosmalin A et al. An immunodominant epitope of the human immunodeficiency virus envelope glycoprotein gp160 recognized by class I major histocompatibility complex molecule-restricted murine cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA85(9), 3105–3109 (1988).
  • Schauber CA, Tuerk MJ, Pacheco CD, Escarpe PA, Veres G. Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Ther.11(3), 266–275 (2004).
  • Andang M, Hinkula J, Hotchkiss G et al. Dose-response resistance to HIV-1/MuLV pseudotype virus ex vivo in a hairpin ribozyme transgenic mouse model. Proc. Natl Acad. Sci. USA96(22), 12749–12753 (1999).
  • Lusso P, di Marzo Veronese F, Ensoli B et al. Expanded HIV-1 cellular tropism by phenotypic mixing with murine endogenous retroviruses. Science247(4944), 848–852 (1990).
  • Spector DH, Wade E, Wright DA et al. Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. J. Virol.64(5), 2298–2308 (1990).
  • Hartley JW, Fredrickson TN, Yetter RA, Makino M, Morse HC 3rd. Retrovirus-induced murine acquired immunodeficiency syndrome: natural history of infection and differing susceptibility of inbred mouse strains. J. Virol.63(3), 1223–1231 (1989).
  • Hartley JW, Rowe WP. Naturally occurring murine leukemia viruses in wild mice: characterization of a new “amphotropic” class. J. Virol.19(1), 19–25 (1976).
  • Rasheed S, Gardner MB, Chan E. Amphotropic host range of naturally occuring wild mouse leukemia viruses. J. Virol.19(1), 13–18 (1976).
  • Miller AD, Chen F. Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J. Virol.70(8), 5564–5571 (1996).
  • Chesebro B, Wehrly K, Maury W. Differential expression in human and mouse cells of human immunodeficiency virus pseudotyped by murine retroviruses. J. Virol.64(9), 4553–4557 (1990).
  • Cronin J, Zhang XY, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther.5(4), 387–398 (2005).
  • Spetz AL, Sorensen AS, Walther-Jallow L et al. Induction of HIV-1-specific immunity after vaccination with apoptotic HIV-1/murine leukemia virus-infected cells. J. Immunol.169(10), 5771–5779 (2002).
  • Delebecque F, Combredet C, Gabet AS, Wattel E, Brahic M, Tangy F. A chimeric human T cell leukemia virus type I bearing a δR Moloney-murine leukemia virus envelope infects mice persistently and induces humoral and cellular immune responses. J. Infect. Dis.191(2), 255–263 (2005).
  • Kavanaugh MP, Miller DG, Zhang W et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl Acad. Sci. USA91(15), 7071–7075 (1994).
  • Albrecht TR, Lund LH, Garcia-Blanco MA. Canine cyclin T1 rescues equine infectious anemia virus tat trans-activation in human cells. Virology268(1), 7–11 (2000).
  • Lund LH, Ljungberg K, Wahren B, Hinkula J. Primary murine cells as a model for HIV-1 infection. AIDS18(7), 1067–1069 (2004).
  • Garber ME, Wei P, KewalRamani VN et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev.12(22), 3512–3527 (1998).
  • Sun J, Soos T, Kewalramani VN et al. CD4-specific transgenic expression of human cyclin T1 markedly increases human immunodeficiency virus type 1 (HIV-1) production by CD4+ T lymphocytes and myeloid cells in mice transgenic for a provirus encoding a monocyte-tropic HIV-1 isolate. J. Virol.80(4), 1850–1862 (2006).
  • Bergmeier LA, Lehner T. Innate and adaptive mucosal immunity in protection against HIV infection. Adv. Dent. Res.19(1), 21–28 (2006).
  • Lehner T. Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine21(Suppl. 2), S68–S76 (2003).
  • Lehner T, Shearer GM, Hackett CJ, Schultz A, Sharma OK. Alloimmunization as a strategy for vaccine design against HIV/AIDS. AIDS Res Hum Retroviruses,16(4), 309–313 (2000).
  • Peters B, Whittall T, Babaahmady K, Gray K, Vaughan R, Lehner T. Effect of heterosexual intercourse on mucosal alloimmunisation and resistance to HIV-1 infection. Lancet,363(9408), 518–524 (2004).
  • Stott EJ. Anti-cell antibody in macaques. Nature353(6343), 393 (1991).
  • Rollman E, Brave A, Boberg A et al. The rationale behind a vaccine based on multiple HIV antigens. Microbes Infect.7(14), 1414 (2005).
  • Rollman E, Mathy N, Brave A et al. Evaluation of immunogenicity and efficacy of combined DNA and adjuvanted protein vaccination in a human immunodeficiency virus type 1/murine leukemia virus pseudotype challenge model. Vaccine25(11), 2145–2154 (2007).
  • Malm M, Rollman E, Ustav M et al. Cross-clade protection induced by human immunodeficiency virus-1 DNA immunogens expressing consensus sequences of multiple genes and epitopes from subtypes A, B, C, and FGH. Viral Immunol.18(4), 678–688 (2005).
  • Brave A, Hinkula J, Cafaro A et al. Candidate HIV-1 gp140δV2, Gag and Tat vaccines protect against experimental HIV-1/MuLV challenge. Vaccine25(39–40), 6882–6890 (2007).
  • Zuber AK, Brave A, Engstrom G et al. Topical delivery of imiquimod to a mouse model as a novel adjuvant for human immunodeficiency virus (HIV) DNA. Vaccine22(13–14), 1791–1798 (2004).
  • Zuber B. Targeting HIV-1 entry and reverse transcription by vaccination. In: Microbiology and Tumor Biology Center. Karolinska Institute Stockholm, Sweden, 63 (2002).
  • Johansson S, Goldenberg DM, Griffiths GL, Wahren B, Hinkula J. Elimination of HIV-1 infection by treatment with a doxorubicin-conjugated anti-envelope antibody. AIDS20(15), 1911–1915 (2006).
  • Ljungberg K, Rollman E, Eriksson L, Hinkula J, Wahren B. Enhanced immune responses after DNA vaccination with combined envelope genes from different HIV-1 subtypes. Virology302(1), 44–57 (2002).
  • Rollman E. Concepts in DNA immunization overcoming viral diversity and enhancing plasmid immunogenicity. In: Microbiology and Tumor Biology Center. Karolinska Institute, Stockholm, Sweden (2004).
  • Brave A, Boberg A, Gudmundsdotter L et al. A new multi-clade DNA prime/recombinant MVA boost vaccine induces broad and high levels of HIV-1-specific CD8+ T-cell and humoral responses in mice. Mol. Ther.15(9), 1724–1733 (2007).
  • Gauduin MC, Parren PW, Weir R, Barbas CF, Burton DR, Koup RA. Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat. Med.3(12), 1389–1393 (1997).
  • Ruprecht RM, Hofmann-Lehmann R, Smith-Franklin BA et al. Protection of neonatal macaques against experimental SHIV infection by human neutralizing monoclonal antibodies. Transfus. Clin. Biol.8(4), 350–358 (2001).
  • Gorantla S, Santos K, Meyer V et al. Human dendritic cells transduced with herpes simplex virus amplicons encoding human immunodeficiency virus type 1 (HIV-1) gp120 elicit adaptive immune responses from human cells engrafted into NOD/SCID mice and confer partial protection against HIV-1 challenge. J. Virol.79(4), 2124–2132 (2005).
  • Greiner DL, Shultz LD, Yates J et al. Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-SCID/SCID mice. Am. J. Pathol.146(4), 888–902 (1995).
  • Page KA, Landau NR, Littman DR. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol.64(11), 5270–5276 (1990).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.