56
Views
13
CrossRef citations to date
0
Altmetric
Review

Vaccination against drug resistance in HIV infection

&
Pages 131-145 | Published online: 09 Jan 2014

References

  • Barre-Sinoussi F, Chermann JC, Rey F et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science220(4599), 868–871 (1983).
  • Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science224(4648), 497–500 (1984).
  • Gallo RC. A reflection on HIV/AIDS research after 25 years. Retrovirology3, 72 (2006).
  • Pomerantz RJ, Horn DL. Twenty years of therapy for HIV-1 infection. Nat. Med.9(7), 867–873 (2003).
  • Jacobson MA, French M. Altered natural history of AIDS-related opportunistic infections in the era of potent combination antiretroviral therapy. AIDS12(Suppl. A), S157–S163 (1998).
  • Dornadula G, Nunnari G, Vanella M et al. Human immunodeficiency virus type 1-infected persons with residual disease and virus reservoirs on suppressive highly active antiretroviral therapy can be stratified into relevant virologic and immunologic subgroups. J. Infect. Dis.183(11), 1682–1687 (2001).
  • Craigo JK, Patterson BK, Paranjpe S et al. Persistent HIV type 1 infection in semen and blood compartments in patients after long-term potent antiretroviral therapy. AIDS Res. Hum. Retroviruses20(11), 1196–1209 (2004).
  • Kulkosky J, Nunnari G, Otero M et al. Intensification and stimulation therapy for human immunodeficiency virus type 1 reservoirs in infected persons receiving virally suppressive highly active antiretroviral therapy. J. Infect. Dis.186(10), 1403–1411 (2002).
  • Domingo E, Holland JJ. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol.51(1), 151–178 (1997).
  • Arts EJ, Wainberg MA. Mechanisms of nucleoside analog antiviral activity and resistance during human immunodeficiency virus reverse transcription. Antimicrob. Agents Chemother.40(3), 527–540 (1996).
  • Richman DD. Drug resistance in relation to pathogenesis. AIDS9(Suppl. A), S49–S53 (1995).
  • Wainberg MA, Gu Z, Gao Q et al. Clinical correlates and molecular basis of HIV drug resistance. J. Acquir. Immune Defic. Syndr.6(Suppl. 1), S36–S46 (1993).
  • Aleman S, Soderbarg K, Visco-Comandini U, Sitbon G, Sonnerborg A. Drug resistance at low viraemia in HIV-1-infected patients with antiretroviral combination therapy. AIDS16(7), 1039–1044 (2002).
  • Johnson VA, Brun-Vezinet F, Clotet B et al. Update of the drug resistance mutations in HIV-1: 2007. Top. HIV Med.15(4), 119–125 (2007).
  • Tozzi V, Corpolongo A, Bellagamba R, Narciso P. Managing patients with sexual transmission of drug-resistant HIV. Sex. Health2(3), 135–142 (2005).
  • Turner D, Wainberg MA. HIV transmission and primary drug resistance. AIDS Rev.8(1), 17–23 (2006).
  • Carr A, Cooper DA. Adverse effects of antiretroviral therapy. Lancet356(9239), 1423–1430 (2000).
  • Sulkowski M. Antiretroviral therapy associated hepatotoxocity. In: HIV and Viral Hepatitis Coinfection. Soriano V (Ed.). Permanyer Publications, Mallorca, Spain (2007).
  • French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. AIDS18(12), 1615–1627 (2004).
  • Zandman-Goddard G, Shoenfeld Y. HIV and autoimmunity. Autoimmun. Rev.1(6), 329–337 (2002).
  • Gandhi RT, Walker BD. Immunologic control of HIV-1. Annu. Rev. Med.53, 149–172 (2002).
  • Lifson AR, Rutherford GW, Jaffe HW. The natural history of human immunodeficiency virus infection. J. Infect. Dis.158(6), 1360–1367 (1988).
  • Munoz A, Wang MC, Bass S et al. Acquired immunodeficiency syndrome (AIDS)-free time after human immunodeficiency virus type 1 (HIV-1) seroconversion in homosexual men. Multicenter AIDS Cohort Study Group. Am. J. Epidemiol.130(3), 530–539 (1989).
  • Turnball E, Borrow P. The immune response to human immunodeficiency virus type 1 (HIV-1). In: Molecular Pathogenesis of Virus Infections. Digard P, Nash A, Randall R (Eds). Cambridge University Press, Cambridge, UK, 23–90 (2005).
  • Turnbull EL, Lopes AR, Jones NA et al. HIV-1 epitope-specific CD8+ T-cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently. J. Immunol.176(10), 6130–6146 (2006).
  • Rosenberg ES, Billingsley JM, Caliendo AM et al. Vigorous HIV-1-specific CD4+ T-cell responses associated with control of viremia. Science278(5342), 1447–1450 (1997).
  • Douek DC, McFarland RD, Keiser PH et al. Changes in thymic function with age and during the treatment of HIV infection. Nature396(6712), 690–695 (1998).
  • Carcelain G, Debre P, Autran B. Reconstitution of CD4+ T lymphocytes in HIV-infected individuals following antiretroviral therapy. Curr. Opin. Immunol.13(4), 483–488 (2001).
  • Gray CM, Lawrence J, Schapiro JM et al. Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individuals receiving highly active antiretroviral therapy (HAART). J. Immunol.162(3), 1780–1788 (1999).
  • Kalams SA, Goulder PJ, Shea AK et al. Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J. Virol.73(8), 6721–6728 (1999).
  • Mollet L, Li TS, Samri A et al. Dynamics of HIV-specific CD8+ T lymphocytes with changes in viral load. The RESTIM and COMET Study Groups. J. Immunol.165(3), 1692–1704 (2000).
  • Pai N, Lawrence J, Reingold A, Tulsky J. Structured treatment interruptions (STI) in chronic unsuppressed HIV infection in adults. Cochrane Database of Syst. Rev.3, CD006148 (2006).
  • Levy Y, Gahery-Segard H, Durier C et al. Immunological and virological efficacy of a therapeutic immunization combined with interleukin-2 in chronically HIV-1 infected patients. AIDS19(3), 279–286 (2005).
  • Levy Y, Durier C, Lascaux AS et al. Sustained control of viremia following therapeutic immunization in chronically HIV-1-infected individuals. AIDS20(3), 405–413 (2006).
  • Girard MP, Osmanov SK, Kieny MP. A review of vaccine research and development: the human immunodeficiency virus (HIV). Vaccine24(19), 4062–4081 (2006).
  • Gudmundsdotter L, Sjodin A, Bostrom AC et al. Therapeutic immunization for HIV. Springer Semin. Immunopathol.28(3), 221–230 (2006).
  • Sandstrom E, Wahren B. Therapeutic immunisation with recombinant gp160 in HIV-1 infection: a randomised double-blind placebo-controlled trial. Nordic VAC-04 Study Group. Lancet353(9166), 1735–1742 (1999).
  • Bourinbaiar AS, Abulafia-Lapid R. Clinical experience with therapeutic AIDS vaccines. Expert Rev. Vaccines4(3), 289–304 (2005).
  • Puls RL, Emery S. Therapeutic vaccination against HIV: current progress and future possibilities. Clin. Sci.110(1), 59–71 (2006).
  • Wahren B, Liu M. Therapeutic vaccination against HIV. Expert Rev. Vaccines3(Suppl. 4), S179–S188 (2004).
  • Bostrom AC, Hejdeman B, Matsuda R et al. Long-term persistence of vaccination and HAART to human immunodeficiency virus (HIV). Vaccine22(13–14), 1683–1691 (2004).
  • Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J. Immunol.175(2), 633–639 (2005).
  • Hokey DA, Weiner DB. DNA vaccines for HIV: challenges and opportunities. Springer Semin. Immunopathol.28(3), 267–279 (2006).
  • Calarota SA, Weiner DB. Approaches for the design and evaluation of HIV-1 DNA vaccines. Expert Rev. Vaccines3(Suppl. 4), S135–S149 (2004).
  • MacGregor RR, Boyer JD, Ugen KE et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis.178(1), 92–100 (1998).
  • Calarota S, Bratt G, Nordlund S et al. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet351(9112), 1320–1325 (1998).
  • Calarota SA, Leandersson A-C, Bratt G et al. Immune responses in asymptomatic HIV-1-infected patients after HIV-DNA immunization followed by highly active antiretroviral treatment. J. Immunol.163(4), 2330–2338 (1999).
  • Hejdeman B, Bostrom AC, Matsuda R et al. DNA immunization with HIV early genes in HIV type 1-infected patients on highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses20(8), 860–870 (2004).
  • Dorrell L, Yang H, Iversen AK et al. Therapeutic immunization of highly active antiretroviral therapy-treated HIV-1-infected patients: safety and immunogenicity of an HIV-1 gag/poly-epitope DNA vaccine. AIDS19(12), 1321–1323 (2005).
  • MacGregor RR, Boyer JD, Ugen KE et al. Plasmid vaccination of stable HIV-positive subjects on antiviral treatment results in enhanced CD8 T-cell immunity and increased control of viral “blips”. Vaccine23(17–18), 2066–2073 (2005).
  • Laddy DJ, Weiner DB. From plasmids to protection: a review of DNA vaccines against infectious diseases. Int. Rev. Immunol.25(3–4), 99–123 (2006).
  • Lori F, Weiner DB, Calarota SA, Kelly LM, Lisziewicz J. Cytokine-adjuvanted HIV-DNA vaccination strategies. Springer Semin. Immunopathol.28(3), 231–238 (2006).
  • Dobbelstein M. Viruses in therapy – royal road or dead end? Virus Res.92(2), 219–221 (2003).
  • Krebs P, Scandella E, Odermatt B, Ludewig B. Rapid functional exhaustion and deletion of CTL following immunization with recombinant adenovirus. J. Immunol.174(8), 4559–4566 (2005).
  • Catanzaro AT, Koup RA, Roederer M et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J. Infect. Dis.194(12), 1638–1649 (2006).
  • Cosma A, Nagaraj R, Buhler S et al. Therapeutic vaccination with MVA-HIV-1 nef elicits Nef-specific T-helper cell responses in chronically HIV-1 infected individuals. Vaccine22(1), 21–29 (2003).
  • Harrer E, Bauerle M, Ferstl B et al. Therapeutic vaccination of HIV-1-infected patients on HAART with a recombinant HIV-1 nef-expressing MVA: safety, immunogenicity and influence on viral load during treatment interruption. Antivir. Ther.10(2), 285–300 (2005).
  • Im EJ, Nkolola JP, di Gleria K, McMichael AJ, Hanke T. Induction of long-lasting multi-specific CD8+ T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques. Eur. J. Immunol.36(10), 2574–2584 (2006).
  • Nkolola JP, Wee EG, Im EJ et al. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa. Gene Ther.11(13), 1068–1080 (2004).
  • Dorrell L, Yang H, Ondondo B et al. Expansion and diversification of virus-specific T cells following immunization of human immunodeficiency virus type 1 (HIV-1)-infected individuals with a recombinant modified vaccinia virus Ankara/HIV-1 Gag vaccine. J. Virol.80(10), 4705–4716 (2006).
  • Lu W, Arraes LC, Ferreira WT, Andrieu JM. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat. Med.10(12), 1359–1365 (2004).
  • Garcia F, Lejeune M, Climent N et al. Therapeutic immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection. J. Infect. Dis.191(10), 1680–1685 (2005).
  • Ide F, Nakamura T, Tomizawa M et al. Peptide-loaded dendritic-cell vaccination followed by treatment interruption for chronic HIV-1 infection: a Phase 1 trial. J. Med. Virol.78(6), 711–718 (2006).
  • Seth A, Yasutomi Y, Jacoby H et al. Evaluation of a lipopeptide immunogen as a therapeutic in HIV type 1-seropositive individuals. AIDS Res. Hum. Retroviruses16(4), 337–343 (2000).
  • Gahery H, Daniel N, Charmeteau B et al. New CD4+ and CD8+ T cell responses induced in chronically HIV type-1-infected patients after immunizations with an HIV type 1 lipopeptide vaccine. AIDS Res. Hum. Retroviruses22(7), 684–694 (2006).
  • Haas G, Samri A, Gomard E et al. Cytotoxic T-cell responses to HIV-1 reverse transcriptase, integrase and protease. AIDS12(12), 1427–1436 (1998).
  • Alatrakchi N, Duvivier C, Costagliola D et al. Persistent low viral load on antiretroviral therapy is associated with T cell-mediated control of HIV replication. AIDS19(1), 25–33 (2005).
  • Harrer E, Harrer T, Barbosa P et al. Recognition of the highly conserved YMDD region in the human immunodeficiency virus type 1 reverse transcriptase by HLA-A2-restricted cytotoxic T lymphocytes from an asymptomatic long-term nonprogressor. J. Infect. Dis.173(2), 476–479 (1996).
  • Laurence J, Saunders A, Kulkosky J. Characterization and clinical association of antibody inhibitory to HIV reverse transcriptase activity. Science235(4795), 1501–1504 (1987).
  • Neumuller M, Karlsson A, Lennerstrand J et al. HIV-1 reverse transcriptase inhibiting antibody titer in serum: relation to disease progression and to core-antibody levels. J. Med. Virol.36(4), 283–291 (1992).
  • Sano K, Lee MH, Morales F et al. Antibody that inhibits human immunodeficiency virus reverse transcriptase and association with inability to isolate virus. J. Clin. Microbiol.25(12), 2415–2417 (1987).
  • Grinsztejn B, Nguyen BY, Katlama C et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a Phase II randomised controlled trial. Lancet369(9569), 1261–1269 (2007).
  • Jones J, Taylor B, Wilkin TJ, Hammer SM. Advances in HIV therapy. Top. HIV Med.15(2), 48–82 (2007).
  • Schmitt M, Harrer E, Goldwich A et al. Specific recognition of lamivudine-resistant HIV-1 by cytotoxic T lymphocytes. AIDS14(6), 653–658 (2000).
  • Samri A, Haas G, Duntze J et al. Immunogenicity of mutations induced by nucleoside reverse transcriptase inhibitors for human immunodeficiency virus type 1-specific cytotoxic T cells. J. Virol.74(19), 9306–9312 (2000).
  • Karlsson AC, Deeks SG, Barbour JD et al. Dual pressure from antiretroviral therapy and cell-mediated immune response on the human immunodeficiency virus type 1 protease gene. J. Virol.77(12), 6743–6752 (2003).
  • Mueller SM, Schaetz B, Eismann K et al. Dual selection pressure by drugs and HLA class I-restricted immune responses on human immunodeficiency virus type 1 protease. J. Virol.81(6), 2887–2898 (2007).
  • Stratov I, Dale CJ, Chea S, McCluskey J, Kent SJ. Induction of T-cell immunity to antiretroviral drug-resistant human immunodeficiency virus type 1. J. Virol.79(12), 7728–7737 (2005).
  • Karlsson AC, Chapman JM, Heiken BD et al. Antiretroviral drug therapy alters the profile of human immunodeficiency virus type 1-specific T-cell responses and shifts the immunodominant cytotoxic T-lymphocyte response from Gag to Pol. J. Virol.81(20), 11543–11548 (2007).
  • Mason RD, Bowmer MI, Howley CM, Gallant M, Myers JC, Grant MD. Antiretroviral drug resistance mutations sustain or enhance CTL recognition of common HIV-1 Pol epitopes. J. Immunol.172(11), 7212–7219 (2004).
  • Mahnke L, Clifford D. Cytotoxic T cell recognition of an HIV-1 reverse transcriptase variant peptide incorporating the K103N drug resistance mutation. AIDS Res. Ther.3, 21 (2006).
  • Casazza JP, Betts MR, Hill BJ et al. Immunologic pressure within class I-restricted cognate human immunodeficiency virus epitopes during highly active antiretroviral therapy. J. Virol.79(6), 3653–3663 (2005).
  • Klein MR, van der Burg SH, Hovenkamp E et al. Characterization of HLA-B57-restricted human immunodeficiency virus type 1 Gag- and RT-specific cytotoxic T lymphocyte responses. J. Gen. Virol.79(Pt 9), 2191–2201 (1998).
  • Migueles SA, Sabbaghian MS, Shupert WL et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl Acad. Sci. USA97(6), 2709–2714 (2000).
  • Jansen CA, Kostense S, Vandenberghe K et al. High responsiveness of HLA-B57-restricted Gag-specific CD8+ T cells in vitro may contribute to the protective effect of HLA-B57 in HIV-infection. Eur. J. Immunol.35(1), 150–158 (2005).
  • Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science296(5572), 1439–1443 (2002).
  • Mason RD, Grant MD. A therapy-related point mutation changes the HLA restriction of an HIV-1 Pol epitope from A2 to B57 and enhances its recognition. AIDS19(9), 981–984 (2005).
  • John M, Moore CB, James IR, Mallal SA. Interactive selective pressures of HLA-restricted immune responses and antiretroviral drugs on HIV-1. Antivir. Ther.10(4), 551–555 (2005).
  • del Val M, Hengel H, Hacker H et al. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J. Exp. Med.176(3), 729–738 (1992).
  • Yellen-Shaw AJ, Eisenlohr LC. Regulation of class I-restricted epitope processing by local or distal flanking sequence. J. Immunol.158(4), 1727–1733 (1997).
  • Beekman NJ, van Veelen PA, van Hall T et al. Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site. J. Immunol.164(4), 1898–1905 (2000).
  • Draenert R, Le Gall S, Pfafferott KJ et al. Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. J. Exp. Med.199(7), 905–915 (2004).
  • Zimbwa P, Milicic A, Frater J et al. Precise identification of a human immunodeficiency virus type 1 antigen processing mutant. J. Virol.81(4), 2031–2038 (2007).
  • Yokomaku Y, Miura H, Tomiyama H et al. Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection. J. Virol.78(3), 1324–1332 (2004).
  • Milicic A, Price DA, Zimbwa P et al. CD8+ T cell epitope-flanking mutations disrupt proteasomal processing of HIV-1 Nef. J. Immunol.175(7), 4618–4626 (2005).
  • Harrer T, Harrer E, Kalams SA et al. Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1 infection. Breadth and specificity of the response and relation to in vivo viral quasispecies in a person with prolonged infection and low viral load. J. Immunol.156(7), 2616–2623 (1996).
  • Sewell AK, Price DA, Teisserenc H et al. IFN-γ exposes a cryptic cytotoxic T lymphocyte epitope in HIV-1 reverse transcriptase. J. Immunol.162(12), 7075–7079 (1999).
  • Strehl B, Seifert U, Kruger E, Heink S, Kuckelkorn U, Kloetzel PM. Interferon-γ, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol. Rev.207, 19–30 (2005).
  • Heink S, Ludwig D, Kloetzel PM, Kruger E. IFN-γ-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc. Natl Acad. Sci. USA102(26), 9241–9246 (2005).
  • Brave A, Ljungberg K, Boberg A et al. Multigene/multisubtype HIV-1 vaccine induces potent cellular and humoral immune responses by needle-free intradermal delivery. Mol. Ther.12(6), 1197–1205 (2005).
  • Starodubova E, Boberg A, Kashuba EV, Wahren B, Karpov V, Isaguliants M. HIV-1 reverse transcriptase targeted for proteasomal degradation as a prototype vaccine against drug-resistant HIV-1. Vaccine24(21), 4541–4547 (2006).
  • Isaguliants MG, Belikov SV, Starodubova ES et al. Mutations conferring drug resistance affect eukaryotic expression of HIV type 1 reverse transcriptase. AIDS Res. Hum. Retroviruses20(2), 191–201 (2004).
  • Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H. PAProC: a prediction algorithm for proteasomal cleavages available on the www. Immunogenetics53(2), 87–94 (2001).
  • Klutch M, Woerner AM, Marcus-Sekura CJ, Levin JG. Generation of HIV-1/HIV-2 cross-reactive peptide antisera by small sequence changes in HIV-1 reverse transcriptase and integrase immunizing peptides. J. Biomed. Sci.5(3), 192–202 (1998).
  • Boberg A, Dominici S, Brave A et al. Immunization with HIV protease peptides linked to syngeneic erythrocytes. Infect. Agent Cancer2(1), 9 (2007).
  • Boberg A, Sjostrand D, Rollman E, Hinkula J, Zuber B, Wahren B. Immunological cross-reactivity against a drug mutated HIV-1 protease epitope after DNA multi-CTL epitope construct immunization. Vaccine24(21), 4527–4530 (2006).
  • Okazaki T, Terabe M, Catanzaro AT, Pendleton CD, Yarchoan R, Berzofsky JA. possible therapeutic vaccine strategy against human immunodeficiency virus escape from reverse transcriptase inhibitors studied in hla-a2 transgenic mice. J. Virol.80(21), 10645–10651 (2006).
  • Isaguliants MG, Pokrovskaya K, Kashuba VI et al. Eukaryotic expression of enzymatically active human immunodeficiency virus type 1 reverse transcriptase. FEBS Lett.447(2–3), 232–236 (1999).
  • Isaguliants MG, Petrakova NN, Zuber B et al. DNA-encoding enzymatically active HIV-1 reverse transcriptase, but not the inactive mutant, confers resistance to experimental HIV-1 challenge. Intervirology43(4–6), 288–293 (2000).
  • Casimiro DR, Tang A, Perry HC et al. Vaccine-induced immune responses in rodents and nonhuman primates by use of a humanized human immunodeficiency virus type 1 pol gene. J. Virol.76(1), 185–194 (2002).
  • zur Megede J, Otten GR, Doe B et al. Expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 subtype B pol and gagpol DNA vaccines. J. Virol.77(11), 6197–6207 (2003).
  • Singh RAK, Barry MA. Repertoire and immunofocusing of CD8 T cell responses generated by HIV-1 gag–pol and expression library immunization vaccines. J. Immunol.173(7), 4387–4393 (2004).
  • Bolesta E, Gzyl J, Wierzbicki A et al. Clustered epitopes within the gag–pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 gag and pol antigens. Virology332(2), 467–479 (2005).
  • Aggarwal P, Pandey RM, Seth P. Augmentation of HIV-1 subtype C vaccine constructs induced immune response in mice by CpG motif 1826-ODN. Viral Immunol.18(1), 213–223 (2005).
  • Gruber A, Chalmers AS, Rasmussen RA et al. Dendritic cell-based vaccine strategy against human immunodeficiency virus clade C: skewing the immune response toward a helper T cell type 2 profile. Viral Immunol.20(1), 160–169 (2007).
  • Vandegraff N, Engelman A. Molecular mechanisms of HIV integration and therapeutic intervention. Expert Rev. Mol. Med.9(6), 1–19 (2007).
  • Isaguliants MG, Zuber B, Boberg A et al. Reverse transcriptase-based DNA vaccines against drug-resistant HIV-1 tested in a mouse model. Vaccine22(13–14), 1810–1819 (2004).
  • Wilson CC, McKinney D, Anders M et al. Development of a DNA vaccine designed to induce cytotoxic T lymphocyteresponses to multiple conserved epitopes in HIV-1. J. Immunol.171(10), 5611–5623 (2003).
  • Li X, Coffino P. Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol. Cell. Biol.13(4), 2377–2383 (1993).
  • Zhang M, Pickart CM, Coffino P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. Embo. J.22(7), 1488–1496 (2003).
  • Starodubova E, Boberg A, Litvina M et al. Genes for proteasomal targeted reverse transcriptase of HIV-1 generate strong T-cell response in mice. Presented at: DNA Vaccine Conference. Malaga, Spain, 23–25 May 2007 (Poster #16).

Website

  • PharmaDD. Strategic therapy: emerging HIV therapies www.pharmadd.com/StrategicBriefings/Emerging%20HIV%20Drugs.asp

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.