976
Views
56
CrossRef citations to date
0
Altmetric
Review

Genetically engineered Tobacco mosaic virus as nanoparticle vaccines

&
Pages 33-41 | Published online: 09 Jan 2014

References

  • Harrison BD, Wilson TM. Milestones in the research on tobacco mosaic virus. Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1383), 521–529 (1999).
  • Bos L. Beijerinck’s work on tobacco mosaic virus: historical context and legacy. Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1383), 675–685 (1999).
  • Kausche GA, Pfankuch E, Ruska H. Die Sichtbarmachung von pflanzlichem Viren im Ubermikroskop. Naturwissenschaften27, 292–299 (1939).
  • Watson JD. The structure of Tobacco mosaic virus. I. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim. Biophys. Acta13(1), 10–19 (1954).
  • Van Regenmortel MH. The antigenicity of tobacco mosaic virus. Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1383), 559–568 (1999).
  • Loor F. Comparative immunogenicities of Tobacco mosaic virus, protein subunits, and reaggregated protein subunits. Virology33(2), 215–220 (1967).
  • Marbrook J, Matthews RE. The differential immunogenicity of plant viral protein and nucleoproteins. Virology28(2), 219–228 (1966).
  • Butler PJ. Self-assembly of Tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1383), 537–550 (1999).
  • Foss FM. Immunologic mechanisms of antitumor activity. Semin. Oncol.29(3 Suppl. 7), 5–11 (2002).
  • Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat. Rev.1(3), 209–219 (2001).
  • Vogel FR. Improving vaccine performance with adjuvants. Clin. Infect. Dis.30(Suppl. 3), S266–S270 (2000).
  • Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res.20(4), 2665–2676 (2000).
  • Jennings GT, Bachmann MF. Designing recombinant vaccines with viral properties: a rational approach to more effective vaccines. Curr. Mol. Med.7(2), 143–155 (2007).
  • Storni T, Kundig TM, Senti G, Johansen P. Immunity in response to particulate antigen-delivery systems. Adv. Drug Deliv. Rev.57(3), 333–355 (2005).
  • Schuurhuis DH, Fu N, Ossendorp F, Melief CJ. Ins and outs of dendritic cells. Int. Arch. Allergy Appl. Immunol.140(1), 53–72 (2006).
  • Ardavin C, Amigorena S, Reis e Sousa C. Dendritic cells: immunobiology and cancer immunotherapy. Immunity20(1), 17–23 (2004).
  • Basta S, Alatery A. The cross-priming pathway: a portrait of an intricate immune system. Scand. J. Immunol.65(4), 311–319 (2007).
  • Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev.207, 166–183 (2005).
  • Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol.5(7), 678–684 (2004).
  • Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nat. Immunol.5(10), 971–974 (2004).
  • Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev.207, 145–157 (2005).
  • Tacken PJ, Torensma R, Figdor CG. Targeting antigens to dendritic cells in vivo.Immunobiology211(6–8), 599–608 (2006).
  • Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods (San Diego)40(1), 1–9 (2006).
  • Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol. Cell Biol.82(5), 506–516 (2004).
  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol.173(5), 3148–3154 (2004).
  • Haynes JRC, von Seefried A, Lennick M, Garvin RT, Shen SH. Development of a genetically-engineered, candidate polio vaccine employing the self-assembling properties of the Tobacco mosaic virus coat protein. Bio/Technology4, 637–641 (1986).
  • Palmer KE, Benko A, Doucette SA et al. Protection of rabbits against cutaneous papillomavirus infection using recombinant tobacco mosaic virus containing L2 capsid epitopes. Vaccine24(26), 5516–5525 (2006).
  • Smith ML, Lindbo JA, Dillard-Telm S et al. Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology348(2), 475–488 (2006).
  • Bendahmane M, Koo M, Karrer E, Beachy RN. Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus–host interactions. J. Mol. Biol.290(1), 9–20 (1999).
  • Koo M, Bendahmane M, Lettieri GA et al. Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proc. Natl Acad. Sci. USA96(14), 7774–7779 (1999).
  • Werner S, Marillonnet S, Hause G, Klimyuk V, Gleba Y. Immunoabsorbent nanoparticles based on a Tobamovirus displaying protein A. Proc. Natl Acad. Sci. USA103(47), 17678–17683 (2006).
  • Turpen TH, Reinl SJ, Charoenvit Y, Hoffman SL, Fallarme V, Grill LK. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Bio/Technology13(1), 53–57 (1995).
  • Fitchen J, Beachy RN, Hein MB. Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine13(12), 1051–1057 (1995).
  • Chackerian B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines6(3), 381–390 (2007).
  • Pogue GP, Lindbo JA, McCulloch JA, Lawrence JE, Gross CS, Garger SJ. US 7,270,825. US Patent Office (Large Scale Biology Corporation) (2007).
  • Jiang L, Li Q, Li M et al. A modified TMV-based vector facilitates the expression of longer foreign epitopes in tobacco. Vaccine24(2), 109–115 (2006).
  • Wu L, Jiang L, Zhou Z et al. Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector. Vaccine21(27–30), 4390–4398 (2003).
  • Lim AA, Tachibana S, Watanabe Y, Wong SM. Expression and purification of a neuropeptide nocistatin using two related plant viral vectors. Gene289(1–2), 69–79 (2002).
  • Negrouk V, Eisner G, Midha S, Lee HI, Bascomb N, Gleba Y. Affinity purification of streptavidin using Tobacco mosaic virus particles as purification tags. Analyt. Biochem.333(2), 230–235 (2004).
  • Miller RA, Presley AD, Francis MB. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J. Am. Chem. Soc.129(11), 3104–3109 (2007).
  • Li Q, Jiang L, Li M et al. Morphology and stability changes of recombinant TMV particles caused by a cysteine residue in the foreign peptide fused to the coat protein. J. Virol. Methods140(1–2), 212–217 (2007).
  • Demir M, Stowell MHB. A chemoselective biomolecular template for assembling diverse nanotubular materials. Nanotechnology13, 541–544 (2002).
  • Smith ML, Corbo T, Bernales J et al. Assembly of trans-encapsidated recombinant viral vectors engineered from Tobacco mosaic virus and Semliki Forest virus and their evaluation as immunogens. Virology358(2), 321–333 (2007).
  • McCormick AA, Corbo TA, Wykoff-Clary S et al. TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. Vaccine24(40–41), 6414–6423 (2006).
  • McCormick AA, Corbo TA, Wykoff-Clary S, Palmer KE, Pogue GP. Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection. Bioconjug. Chem.17(5), 1330–1338 (2006).
  • Denis J, Majeau N, Acosta-Ramirez E et al. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology363(1), 59–68 (2007).
  • Lacasse P, Denis J, Lapointe R, Leclerc D, Lamarre A. Novel plant virus-based vaccine induces protective CTL-mediated antiviral immunity through dendritic cell maturation. J. Virol.82(2), 785–794 (2007).
  • Savelyeva N, Munday R, Spellerberg MB, Lomonossoff GP, Stevenson FK. Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nat. Biotechnol.19(8), 760–764 (2001).
  • Pokorna D, Cerovska N, Smahel M et al. DNA vaccines based on chimeric potyvirus-like particles carrying HPV16 E7 peptide (aa 44–60). Oncology Reports14(4), 1045–1053 (2005).
  • Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N. Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J. Endocrinol.193(3), 323–330 (2007).
  • O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev.7(5), 353–364 (2007).
  • Hwang DJ, Roberts IM, Wilson TM. Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proc. Natl Acad. Sci. USA91(19), 9067–9071 (1994).
  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM. In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science236(4805), 1122–1124 (1987).
  • Staczek J, Bendahmane M, Gilleland LB, Beachy RN, Gilleland HE Jr. Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine18(21), 2266–2274 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.