79
Views
24
CrossRef citations to date
0
Altmetric
Review

Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum

, , , , , , & show all
Pages 55-74 | Published online: 09 Jan 2014

References

  • Albrecht MT, Li H, Williamson ED et al. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax. Infect. Immun.75(11), 5425–5433 (2007).
  • Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med.354(2), 462–471 (2006).
  • Casadevall A. Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg. Infect. Dis.8(8), 833–841 (2002).
  • Casadevall A. Antibodies for defense against biological attack. Nat. Biotechnol.20(2), 114 (2002).
  • Eubanks LM, Dickerson TJ, Janda KD. Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem. Soc. Rev.36, 458–470 (2007).
  • Greenfield RA, Bronze MS. Prevention and treatment of bacterial diseases caused by bacterial bioterrorism threat agents. Drug Discov. Today8(19), 881–888 (2003).
  • Kozel TR, Murphy WJ, Brandt S et al. mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc. Natl Acad. Sci. USA101(14), 5042–5047 (2004).
  • Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH, Wilson S. A roadmap for the immunomics of category A–C pathogens. Immunity22(2), 155–161 (2005).
  • Spencer RC. Bacillus anthracis. J. Clin. Pathol.56(3), 182–187 (2003).
  • Swiecki MK, Lisanby MW, Shu F, Turnbough CL Jr, Kearney JF. Monoclonal antibodies for Bacillus anthracis spore detection and functional analyses of spore germination and outgrowth. J. Immunol.176(10), 6076–6084 (2006).
  • Zhou B, Wirsching P, Janda KD. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat. Proc. Natl Acad. Sci. USA99(8), 5241–5246 (2002).
  • Dixon TC, Meselson M, Guillemin J, Hanna PC. Anthrax. N. Engl. J. Med.341(11), 815–826 (1999).
  • Vitale L, Blanset D, Lowy I et al. Prophylaxis and therapy of inhalational anthrax by a novel monoclonal antibody to protective antigen that mimics vaccine-induced immunity. Infect. Immun.74(10), 5840–5847 (2006).
  • Peterson JW, Comer JE, Baze WB et al. Human monoclonal antibody AVP-21D9 to protective antigen reduces dissemination of the Bacillus anthracis Ames strain from the lungs in a rabbit model. Infect. Immun.75(7), 3414–3424 (2007).
  • Bui HH, Peters B, Assarsson E, Mbawuike I, Sette A. Ab and T-cell epitopes of influenza A virus, knowledge and opportunities. Proc. Natl Acad. Sci. USA104(1), 246–251 (2007).
  • Vita R, Vaughan K, Zarebski L et al. Curation of complex, context-dependent immunological data. BMC Bioinformatics7, 341–348 (2006).
  • Peters B, Sidney J, Bourne P et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol.3(3), e91 (2005).
  • Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev.68(3), 373–402 (2004).
  • Young JA, Collier RJ. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem.76, 243–265 (2007).
  • Mosser EM, Rest RF. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol.656 (2006).
  • Arnon SS, Schechter R, Inglesby TV et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA285(8), 1059–1070 (2001).
  • Schiavo, G. Structural biology: dangerous liaisons on neurons. Nature444, 1019–1020 (2006).
  • Blöcker D, Barth H, Maier E, Benz R, Barbieri JT, Aktories K. The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding. Infect. Immun.68(8), 4566–4573 (2000).
  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E. Botulinum C2 toxin ADP-ribosylates actin. Nature322, 390–392 (1986).
  • Brodzik R, Bandurska K, Deka D, Golovkin M, Koprowski H. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta. Biochem. Biophys. Res. Commun.338(2), 717 (2005).
  • Goyard S, Orlando C, Sabatier JM et al. Identification of a common domain in calmodulin-activated eukaryotic and bacterial adenylate cyclases. Biochemistry28(5), 1964–1967 (1989).
  • Gubbins MJ, Berry JD, Corbett CR et al. Production and characterization of neutralizing monoclonal antibodies that recognize an epitope in domain 2 of Bacillus anthracis protective antigen. FEMS Immunol. Med. Microbiol.47(3), 436–443 (2006).
  • Kozel TR, Thorkildson P, Brandt S et al. Protective and immunochemical activities of monoclonal antibodies reactive with the Bacillus anthracis polypeptide capsule. Infect. Immun.75(1), 152–163 (2007).
  • Laffly E, Danjou L, Condemine F et al. Selection of a macaque Fab with framework regions like those in humans, high affinity, and ability to neutralize the protective antigen (PA) of Bacillus anthracis by binding to the segment of PA between residues 686 and 694. Antimicrob. Agents Chemother.49(8), 3414–3420 (2005).
  • Lim NK, Kim JH, Oh MS et al. An anthrax lethal factor-neutralizing monoclonal antibody protects rats before and after challenge with anthrax toxin. Infect. Immun.73(10), 6547–6551 (2005).
  • Little SF, Novak JM, Lowe JR et al. Characterization of lethal factor binding and cell receptor binding domains of protective antigen of Bacillus anthracis using monoclonal antibodies. Microbiology142(3), 707–715 (1996).
  • McConnell MJ, Danthinne X, Imperiale MJ. Characterization of a permissive epitope insertion site in adenovirus hexon. J. Virol.80(11), 5361–5370 (2006).
  • Mehta AS, Saile E, Zhong W et al. Synthesis and antigenic analysis of the BclA glycoprotein oligosaccharide from the Bacillus anthracis exosporium. Chemistry12(36), 9136–9149 (2006).
  • Reed DS, Smoll J, Gibbs P, Little SF. Mapping of antibody responses to the protective antigen of Bacillus anthracis by flow cytometric analysis. Cytometry49(1), 1–7 (2002).
  • Rosovitz MJ, Schuck P, Varughese M et al. Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J. Biol. Chem.278(33), 30936–30944 (2003).
  • Schneerson R, Kubler-Kielb J, Liu TY et al. Poly(γ-d-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc. Natl Acad. Sci. USA100(15), 8945–8950 (2003).
  • Wang TT, Fellows PF, Leighton TJ, Lucas AH. Induction of opsonic antibodies to the γ-d-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS Immunol. Med. Microbiol.40(3), 231–237 (2004).
  • Wang TT, Lucas AH. The capsule of Bacillus anthracis behaves as a thymus-independent type 2 antigen. Infect. Immun.72(9), 5460–5463 (2004).
  • Zhang J, Xu J, Li G et al. The 2β2–2β3 loop of anthrax protective antigen contains a dominant neutralizing epitope. Biochem. Biophys. Res. Commun.341(4), 1164–1171 (2006).
  • Laughlin EM, Miller JD James E et al. Antigen-specific CD4+ T cells recognize epitopes of protective antigen following vaccination with an anthrax vaccine. Infect. Immun.75(4), 1852–1860 (2007).
  • Musson JA, Walker N, Flick-Smith H, Williamson ED, Robinson JH. Differential processing of CD4 T-cell epitopes from the protective antigen of Bacillus anthracis. J. Biol. Chem.278(52), 52425–52431 (2003).
  • Smith ME, Koser M, Xiao S et al. Rabies virus glycoprotein as a carrier for anthrax protective antigen. Virology353(2), 344–356 (2006).
  • von Delwig A, Musson JA, Shim HK et al. Distribution of productive antigen-processing activity for MHC class II presentation in macrophages. Scand. J. Immunol.62(3), 243–250 (2005).
  • Ahmed SA, Smith LA. Light chain of botulinum A neurotoxin expressed as an inclusion body from a synthetic gene is catalytically and functionally active. J. Protein Chem.19(6), 475–487 (2000).
  • Atassi MZ, Dolimbek BZ, Hayakari M, Middlebrook JL, Whitney B, Oshima M. Mapping of the antibody-binding regions on botulinum neurotoxin H-chain domain 855–1296 with antitoxin antibodies from three host species. J. Protein Chem.15(7), 691–700 (1996).
  • Atassi MZ, Dolimbek BZ. Mapping of the antibody-binding regions on the HN-domain (residues 449–859) of botulinum neurotoxin A with antitoxin antibodies from four host species. Full profile of the continuous antigenic regions of the H-chain of botulinum neurotoxin A. Protein J.23(1), 39–52 (2004).
  • Atassi MZ, Dolimbek GS, Deitiker PR, Aoki KR, Dolimbek BZ. Submolecular recognition profiles in two mouse strains of non-protective and protective antibodies against botulinum neurotoxin A. Mol. Immunol.42(12), 1509–1520 (2005).
  • Bavari S, Pless DD, Torres ER, Lebeda FJ, Olson MA. Identifying the principal protective antigenic determinants of type A botulinum neurotoxin. Vaccine16(19), 1850–1856 (1998).
  • Cenci Di Bello I, Poulain B, Shone CC, Tauc L, Dolly JO. Antagonism of the intracellular action of botulinum neurotoxin type A with monoclonal antibodies that map to light-chain epitopes. Eur. J. Biochem.219(1–2), 161–169 (1994).
  • Dolimbek BZ, Aoki KR, Steward LE, Jankovic J, Atassi MZ. Mapping of the regions on the heavy chain of botulinum neurotoxin A (BoNT/A) recognized by antibodies of cervical dystonia patients with immunoresistance to BoNT/A. Mol. Immunol.44(5), 1029–1041 (2007).
  • Kubota T, Watanabe T, Yokosawa N et al. Epitope regions in the heavy chain of Clostridium botulinum type E neurotoxin recognized by monoclonal antibodies. Appl. Environ. Microbiol.63(4), 1214–1218 (1997).
  • Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD. Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J. Mol. Biol.365(1), 196–210 (2007).
  • Oshima M, Hayakari M, Middlebrook JL, Atassi MZ. Immune recognition of botulinum neurotoxin type A: regions recognized by T cells and antibodies against the protective H(C) fragment (residues 855–1296) of the toxin. Mol. Immunol.34(14), 1031–1040 (1997).
  • Oshima M, Middlebrook JL, Atassi MZ. Antibodies and T cells against synthetic peptides of the C-terminal domain (Hc) of botulinum neurotoxin type A and their cross-reaction with Hc. Immunol. Lett.60(1), 7–12 (1998).
  • Dolimbek GS, Dolimbek BZ, Aoki KR, Atassi MZ. Mapping of the antibody and T cell recognition profiles of the HN domain (residues 449–859) of the heavy chain of botulinum neurotoxin A in two high-responder mouse strains. Immunol. Invest.34(2), 119–142 (2005).
  • Reuveny S, White MD, Adar YY et al. Search for correlates of protective immunity conferred by anthrax vaccine. Infect. Immun.69(5), 2888–2893 (2001).
  • Steichen C, Chen P, Kearney JF, Turnbough CL Jr. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol.185(6), 1903–1910 (2003).
  • Read TD, Peterson SN, Tourasse N et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423(6935), 81–86 (2003).
  • Subramanian GM, Cronin PW, Poley G et al. A Phase I study of PAmAb, a fully human monoclonal antibody against Bacillus anthracis protective antigen, in healthy volunteers. Clin. Infect. Dis.41(1), 12–20 (2005).
  • Kudva IT, Griffin RW, Garren JM, Calderwood SB, John M. Identification of a protein subset of the anthrax spore immunome in humans immunized with the anthrax vaccine adsorbed preparation. Infect. Immun.73(9), 5685–5696 (2005).
  • Baillie L, Townend T, Walker N, Eriksson U, Williamson D. Characterization of the human immune response to the UK anthrax vaccine. FEMS Immunol. Med. Microbiol.42(2), 267–270 (2004).
  • Brossier F, Levy M, Landier A, Lafaye P, Mock M. Functional analysis of Bacillus anthracis protective antigen by using neutralizing monoclonal antibodies. Infect. Immun.72(11), 6313–6317 (2004).
  • Chen Z, Moayeri M, Zhou YH et al. Efficient neutralization of anthrax toxin by chimpanzee monoclonal antibodies against protective antigen. J. Infect. Dis.193(5), 625–633 (2006).
  • Flick-Smith HC, Waters EL, Walker NJ et al. Mouse model characterisation for anthrax vaccine development: comparison of one inbred and one outbred mouse strain. Microb. Pathog.38(1), 33–40 (2005).
  • Flick-Smith HC, Walker NJ, Gibson P et al. A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect. Immun.70(3), 1653–1656 (2002).
  • Rivera J, Nakouzi A, Abboud N et al. A monoclonal antibody to Bacillus anthracis protective antigen defines a neutralizing epitope in domain 1. Infect. Immun.74(7), 4149–4156 (2006).
  • Williamson ED, Hodgson I, Walker NJ et al. Immunogenicity of recombinant protective antigen and efficacy against aerosol challenge with anthrax. Infect. Immun.73(9), 5978–5987 (2005).
  • Chichester JA, Musiychuk K, de la Rosa P et al. Immunogenicity of a subunit vaccine against Bacillus anthracis. Vaccine25(6), 3111–3114 (2007).
  • Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR. Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect. Immun.69(7), 4509–4515 (2001).
  • Little SF, Leppla SH, BurnettJW, Friedlander AM. Structure–function analysis of Bacillus anthracis edema factor by using monoclonal antibodies. Biochem. Biophys. Res. Commun.199(2), 676–682 (1994).
  • Zeng M, Xu Q, Hesek ED, Pichichero ME. N-fragment of edema factor as a candidate antigen for immunization against anthrax. Vaccine24(5), 662–670 (2006).
  • Amersdorfer P, Wong C, Chen S et al. Molecular characterization of murine humoral immune response to botulinum neurotoxin type A binding domain as assessed by using phage antibody libraries. Infect. Immun.65(9), 3743–3752 (1997).
  • Nowakowski A, Wang C, Powers DB et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl Acad. Sci. USA99(17), 11346–11350 (2002).
  • Smith TJ, Lou J, Geren IN et al. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect. Immun.73(9), 5450–5457 (2005).
  • Garcia-Rodriguez C, Levy R et al. Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat. Biotechnol.25(1), 107–116 (2007).
  • Arndt JW, Jacobson MJ, Abola EE et al. A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. J. Mol. Biol.362(4), 733–742 (2006).
  • Amersdorfer P, Wong C, Smith T et al. Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. Vaccine20(11–12), 1640–1648 (2002).
  • Baldwin MR, Tepp WH, Pier CL et al. Characterization of the antibody response to the receptor binding domain of botulinum neurotoxin serotypes A and E. Infect. Immun.73(10), 6998–7005 (2005).
  • Byrne MP, Smith TJ, Montgomery VA, Smith LA. Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect. Immun.66(10), 4817–4822 (1998).
  • Dertzbaugh MT, West MW. Mapping of protective and cross-reactive domains of the type A neurotoxin of Clostridium botulinum. Vaccine14(16), 1538–1544 (1996).
  • Kozaki S, Miki A, Kamata Y, Ogasawara J, Sakaguchi G. Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect. Immun.57(9), 2634–2639 (1989).
  • Mullaney BP, Pallavicini MG, Marks JD. Epitope mapping of neutralizing botulinum neurotoxin A antibodies by phage display. Infect. Immun.69(10), 6511–6514 (2001).
  • Pless DD, Torres ER, Reinke EK, Bavari S. High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A. Infect. Immun.69(1), 570–574 (2001).
  • Boles J, West M, Montgomery V et al. Recombinant C fragment of botulinum neurotoxin B serotype (rBoNTB (HC)) immune response and protection in the rhesus monkey. Toxicon47(8), 877–884 (2006).
  • Potter KJ, Bevins MA, Vassilieva EV et al. Production and purification of the heavy-chain fragment C of botulinum neurotoxin, serotype B, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif.13(3), 357–365 (1998).
  • Yang GH, Kim KS, Kim HW et al. Isolation and characterization of a neutralizing antibody specific to internalization domain of Clostridium botulinum neurotoxin type B. Toxicon44(1), 19–25 (2004).
  • Kozaki S, Kamata Y, Nishiki T et al. Characterization of Clostridium botulinum type B neurotoxin associated with infant botulism in Japan. Infect. Immun.66(10), 4811–4816 (1998).
  • Kozaki S, Ogasawara J, Shimote Y, Kamata Y, Sakaguchi G. Antigenic structure of Clostridium botulinum type B neurotoxin and its interaction with gangliosides, cerebroside, and free fatty acids. Infect. Immun.55(12), 3051–3056 (1987).
  • Ochanda JO, Syuto B, Oguma K, Iida H, Kubo S. Comparison of antigenicity of toxins produced by Clostridium botulinum type C and D strains. Appl. Environ. Microbiol.47(6), 1319–1322 (1984).
  • Oguma K, Agui T, Syuto B, Kimura K, Iida H, Kubo S. Four different monoclonal antibodies against type C1 toxin of Clostridium botulinum. Infect. Immun.38(1), 14–20 (1982).
  • Oguma K, Murayama S, Syuto B, Iida H, Kubo S. Analysis of antigenicity of Clostridium botulinum type C1 and D toxins by polyclonal and monoclonal antibodies. Infect. Immun.43(2), 584–588 (1984).
  • Tsuzuki K, Yokosawa N, Syuto B et al. Establishment of a monoclonal antibody recognizing an antigenic site common to Clostridium botulinum type B, C1, D, and E toxins and tetanus toxin. Infect. Immun.56(4), 898–902 (1988).
  • Kozaki S, Kamata Y, Nagai T, Ogasawara J, Sakaguchi G. The use of monoclonal antibodies to analyze the structure of Clostridium botulinum type E derivative toxin. Infect. Immun.52(3), 786–791 (1986).
  • Holley JL, Elmore M, Mauchline M, Minton N, Titball RW. Cloning, expression and evaluation of a recombinant sub-unit vaccine against Clostridium botulinum type F toxin. Vaccine19(2–3), 288–297 (2000).
  • Mohamed N, Li, J, Ferreira CS et al. Enhancement of anthrax lethal toxin cytotoxicity: a subset of monoclonal antibodies against protective antigen increases lethal toxin-mediated killing of murine macrophages. Infect. Immun.72(6), 3276–3683 (2004).
  • Brossier F, Levy M, Mock M. Anthrax spores make an essential contribution to vaccine efficacy. Infect. Immun.70(2), 661–664 (2002).
  • Wang JY, Roehrl MH. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin. Med. Immunol.4(1), 4 (2005).
  • Welkos S, Friedlander A, Weeks S, Little S, Mendelson I. In-vitro characterization of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J. Med. Microbiol.51(10), 821–831 (2002).

Websites

  • Immune Epitope Database and Analysis Resource www.immuneepitope.org
  • NIAID Category A, B and C Priority Pathogens www3.niaid.nih.gov/biodefense/PDF/cat.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.