567
Views
3
CrossRef citations to date
0
Altmetric
Editorial

CD4+ T-cell subsets: what really counts in preventing HIV disease?

, &
Pages 155-158 | Published online: 09 Jan 2014

References

  • Burton DR, Desrosiers RC, Doms RW et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol.5(3), 233–236 (2004).
  • Johnston MI, Fauci AS. An HIV vaccine – evolving concepts. N. Engl. J. Med.356(20), 2073–2081 (2007).
  • Steinbrook R. One step forward, two steps back – will there ever be an AIDS vaccine? N. Engl. J. Med.357(26), 2653–2655 (2007).
  • Brenchley JM, Schacker TW, Ruff LE et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med.200(6), 749–759 (2004).
  • Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature434(7037), 1093–1097 (2005).
  • Wang X, Rasmussen T, Pahar B et al. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection. Blood109(3), 1174–1181 (2007).
  • Li Q, Duan L, Estes JD et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature434(7037), 1148–1152 (2005).
  • Davenport MP, Zaunders JJ, Hazenberg MD, Schuitemaker H, van Rij RP. Cell turnover and cell tropism in HIV-1 infection. Trends Microbiol.10(6), 275–278 (2002).
  • Ribeiro RM, Hazenberg MD, Perelson AS, Davenport MP. Naive and memory cell turnover as drivers of CCR5-to-CXCR4 tropism switch in human immunodeficiency virus type 1: implications for therapy. J. Virol.80(2), 802–809 (2006).
  • Nishimura Y, Igarashi T, Donau OK et al. Highly pathogenic SHIVs and SIVs target different CD4+ T cell subsets in rhesus monkeys, explaining their divergent clinical courses. Proc. Natl Acad. Sci. USA101(33), 12324–12329 (2004).
  • Douek DC, Brenchley JM, Betts MR et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature417(6884), 95–98 (2002).
  • Picker LJ, Watkins DI. HIV pathogenesis: the first cut is the deepest. Nat. Immunol.6(5), 430–432 (2005).
  • Yue FY, Kovacs CM, Dimayuga RC et al. Preferential apoptosis of HIV-1-specific CD4+ T cells. J. Immunol.174(4), 2196–2204 (2005).
  • Li-Weber M, Weigand MA, Giaisi M et al. Vitamin E inhibits CD95 ligand expression and protects T cells from activation-induced cell death. J. Clin. Invest.110(5), 681–690 (2002).
  • Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol.169(6), 3400–3406 (2002).
  • Hazenberg MD, Otto SA, van Benthem BH et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS17(13), 1881–1888 (2003).
  • Brenchley JM, Price DA, Schacker TW et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med.12(12), 1365–1371 (2006).
  • Dunham R, Pagliardini P, Gordon S et al. The AIDS resistance of naturally SIV-infected sooty mangabeys is independent of cellular immunity to the virus. Blood108(1), 209–217 (2006).
  • Bostik P, Noble ES, Mayne AE, Gargano L, Villinger F, Ansari AA. Central memory CD4 T cells are the predominant cell subset resistant to anergy in SIV disease resistant sooty mangabeys. AIDS20(2), 181–188 (2006).
  • Letvin NL, Mascola JR, Sun Y et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science312(5779), 1530–1533 (2006).
  • Felber BK, von Gegerfelt A, Valentin A et al. Preservation of a subset of SIV-specific central memory CD4+ T cells correlates with control of viremia in SIVmac251 infected macaques. Retrovirology3(Suppl. 1), S93 (2006).
  • Elrefaei M, McElroy MD, Preas CP et al. Central memory CD4+ T cell responses in chronic HIV infection are not restored by antiretroviral therapy. J. Immunol.173(3), 2184–2189 (2004).
  • Kinter A, McNally J, Riggin L, Jackson R, Roby G, Fauci AS. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl Acad. Sci. USA104(9), 3390–3395 (2007).
  • Kinter AL, Horak R, Sion M et al. CD25+ regulatory T cells isolated from HIV-infected individuals suppress the cytolytic and nonlytic antiviral activity of HIV-specific CD8+ T cells in vitro. AIDS Res. Hum. Retroviruses23(3), 438–450 (2007).
  • Estes JD, Li Q, Reynolds MR et al. Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J. Infect. Dis.193(5), 703–712 (2006).
  • Andersson J, Boasso A, Nilsson J et al. The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J. Immunol.174(6), 3143–3147 (2005).
  • Lim A, Tan D, Price P et al. Proportions of circulating T cells with a regulatory cell phenotype increase with HIV-associated immune activation and remain high on antiretroviral therapy. AIDS21(12), 1525–1534 (2007).
  • Nilsson J, Boasso A, Velilla PA et al. HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood108(12), 3808–3817 (2006).
  • Kinter AL, Hennessey M, Bell A et al. CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J. Exp. Med.200(3), 331–343 (2004).
  • Legrand FA, Nixon DF, Loo CP et al. Strong HIV-1-specific T cell responses in HIV-1-exposed uninfected infants and neonates revealed after regulatory T cell removal. PLoS ONE1, e102 (2006).
  • Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203(7), 1693–1700 (2006).
  • Chea S, Dale CJ, De Rose R, Ramshaw IA, Kent SJ. Enhanced cellular immunity in macaques following a novel peptide immunotherapy. J. Virol.79, 3748–3757 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.