498
Views
46
CrossRef citations to date
0
Altmetric
Review

Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria

, , &
Pages 163-174 | Published online: 09 Jan 2014

References

  • Acheson DW, Luccioli S. Mucosal immune responses. Best Pract. Res. Clin. Gastroenterol.18(2), 387–404 (2004).
  • Niedergang F, Kweon MN. New trends in antigen uptake in the gut mucosa. Trends Microbiol.13(10), 485–490 (2005)
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat. Med.11(4 Suppl.), S45–S53 (2005).
  • Akira S. TLR signaling. Curr. Top. Microbiol. Immunol.311, 1–16 (2006).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2(8), 675–680 (2001).
  • Ishii KJ, Uematsu S, Akira S. ‘Toll’ gates for future immunotherapy. Curr. Pharm. Des.12(32), 4135–4142 (2006).
  • Kawai T, Akira S. TLR signaling. Semin. Immunol.19(1), 24–32 (2007).
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • Sierro F, Dubois B, Coste A, Kaiserlian D, Kraehenbuhl JP, Sirard JC. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl Acad. Sci. USA98(24), 13722–13727 (2001).
  • Iliev ID, Matteoli G, Rescigno M. The yin and yang of intestinal epithelial cells in controlling dendritic cell function. J. Exp. Med.204(10), 2253–2257 (2007).
  • Debard N, Sierro F, Browning J, Kraehenbuhl JP. Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer’s patches. Gastroenterology120(5), 1173–1182 (2001).
  • Hathaway LJ, Kraehenbuhl JP. The role of M cells in mucosal immunity. Cell Mol. Life Sci.57(2), 323–332 (2000).
  • Kraehenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol.16, 301–332 (2000).
  • Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol.2(11), 1004–1009 (2001).
  • Niedergang F, Kraehenbuhl JP. Much ado about M cells. Trends Cell Biol.10(4), 137–141 (2000).
  • Finke D, Kraehenbuhl JP. Formation of Peyer’s patches. Curr. Opin. Genet. Dev.11(5), 561–567 (2001).
  • Gebert A, Pabst R. M cells at locations outside the gut. Semin. Immunol.11(3), 165–170 (1999).
  • Gebert A, Fassbender S, Werner K, Weissferdt A. The development of M cells in Peyer’s patches is restricted to specialized dome-associated crypts. Am. J. Pathol.154(5), 1573–1582 (1999).
  • Gebert A, Steinmetz I, Fassbender S, Wendlandt KH. Antigen transport into Peyer’s patches: increased uptake by constant numbers of M cells. Am. J. Pathol.164(1), 65–72 (2004).
  • Kerneis S, Pringault E. Plasticity of the gastrointestinal epithelium: the M cell paradigm and opportunism of pathogenic microorganisms. Semin. Immunol.11(3), 205–215 (1999).
  • Hamzaoui N, Kerneis S, Caliot E, Pringault E. Expression and distribution of beta1 integrins in in vitro-induced M cells: implications for Yersinia adhesion to Peyer’s patch epithelium. Cell Microbiol.6(9), 817–828 (2004).
  • Jang MH, Kweon MN, Iwatani K et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. USA101(16), 6110–6115 (2004).
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature449(7161), 419–426 (2007).
  • Banchereau J. The long arm of the immune system. Sci. Am.287(5), 52–59 (2002).
  • Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Palucka K, Banchereau J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr. Opin. Immunol.14(4), 420–431 (2002).
  • Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science293(5528), 253–256 (2001).
  • Palucka AK, Banchereau J. Langerhans cells: daughters of monocytes. Nat. Immunol.7(3), 223–224 (2006).
  • Wu L, Liu YJ. Development of dendritic-cell lineages. Immunity26(6), 741–750 (2007).
  • Austyn JM. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med.183(4), 1287–1292 (1996).
  • Austyn JM. Dendritic cells. Curr. Opin. Hematol.5(1), 3–15 (1998).
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med.82(2), 389–400 (1995).
  • Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell106(3), 263–266 (2001).
  • Mohamadzadeh M, Pavlidou A, Enk A, Knop J, Rude E, Gradehandt G. Freshly isolated mouse 4F7+ splenic dendritic cells process and present exogenous antigens to T cells. Eur. J. Immunol.24(12), 3170–3174 (1994).
  • Caux C, Vanbervliet B, Massacrier C et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF α. J. Exp. Med.184(2), 695–706 (1996).
  • Mohamadzadeh M, Berard F, Essert G et al. Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J. Exp. Med.194(7), 1013–1020 (2001).
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J. Exp. Med.179(4), 1109–1118 (1994).
  • Grouard G, Durand I, Filgueira L, Banchereau J, Liu YJ. Dendritic cells capable of stimulating T cells in germinal centres. Nature384(6607), 364–367 (1996).
  • Liu YJ, Grouard G, de Bouteiller O, Banchereau J. Follicular dendritic cells and germinal centers. Int. Rev. Cytol.66, 139–179 (1996).
  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393(6684), 480–483 (1998).
  • Kelsoe G, Zheng B. Sites of B-cell activation in vivo. Curr. Opin. Immunol.5(3), 418–422 (1993).
  • Pulendran B, Karvelas M, Nossal GJ. A form of immunologic tolerance through impairment of germinal center development. Proc. Natl Acad. Sci. USA91(7), 2639–2643 (1994).
  • Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol.2(4), 361–367 (2001).
  • Kelsall BL, Strober W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer’s patch. J. Exp. Med.183(1), 237–247 (1996).
  • Niess JH, Brand S, Gu X et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science307(5707), 254–258 (2005).
  • Kraehenbuhl JP, Corbett M. Immunology. Keeping the gut microflora at bay. Science203(5664), 1624–1625 (2004).
  • Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science303(5664), 1662–1665 (2004).
  • Tezuka H, Abe Y, Iwata M et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature448(7156), 929–933 (2007).
  • Ngan J, Kind LS. Suppressor T cells for IgE and IgG in Peyer’s patches of mice made tolerant by the oral administration of ovalbumin. J. Immunol.120(3), 861–865 (1978).
  • Johansson-Lindbom B, Agace WW. Vitamin A helps gut T cells find their way in the dark. Nat. Med.10(12), 1300–1301 (2004).
  • Johansson-Lindbom B, Agace WW. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol. Rev.215, 226–242 (2007).
  • Johansson-Lindbom B, Svensson M, Pabst O et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med.202(8), 1063–1073 (2005).
  • Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med.198(6), 963–969 (2003).
  • Siewert C, Menning A, Dudda J et al. Induction of organ-selective CD4+ regulatory T cell homing. Eur. J. Immunol.37(4), 978–89 (2007).
  • Sun CM, Hall JA, Blank RB et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med.204(8), 1775–1785 (2007).
  • von Boehmer H. Oral tolerance: is it all retinoic acid? J. Exp. Med.204(8), 1737–1739 (2007).
  • Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol.8(10), 1086–1094 (2007).
  • Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine21(Suppl. 2), S89–S95 (2003).
  • Schoen C, Stritzker J, Goebel W, Pilgrim S. Bacteria as DNA vaccine carriers for genetic immunization. Int. J. Med. Microbiol.294(5), 319–335 (2004).
  • Vajdy M, Srivastava I, Polo J, Donnelly J, O’Hagan D, Singh M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol. Cell Biol.82(6), 617–627 (2004).
  • Mohamadzadeh M, Chen L, Schmaljohn AL. How Ebola and Marburg viruses battle the immune system. Nat. Rev. Immunol.7(7), 556–567 (2007).
  • Guerrero RA, Ball JM, Krater SS, Pacheco SE, Clements JD, Estes MK. Recombinant Norwalk virus-like particles administered intranasally to mice induce systemic and mucosal (fecal and vaginal) immune responses. J. Virol.75(20), 713–722 (2001).
  • Niikura M, Takamura S, Kim G et al. Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology293(2), 273–280 (2002).
  • Shi W, Liu J, Huang Y, Qiao L. Papillomavirus pseudovirus: a novel vaccine to induce mucosal and systemic cytotoxic T-lymphocyte responses. J. Virol.75(21), 10139–10148 (2001).
  • Warfield KL, Swenson DL, Demmin G, Bavari S. Filovirus-like particles as vaccines and discovery tools. Expert Rev. Vaccines4(3), 429–440 (2005).
  • Reed DS, Mohamadzadeh M. Status and challenges of filovirus vaccines. Vaccine25(11), 1923–1934 (2007).
  • Holmgren J, Harandi AM, Czerkinsky C. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Expert Rev. Vaccines2(2), 205–217 (2003).
  • Plant A, Williams NA. Modulation of the immune response by the cholera-like enterotoxins. Curr. Top. Med. Chem.4(5), 509–519 (2004).
  • Elson CO, Dertzbaugh MT (Eds). Mucosal Adjuvants. New York Academic Press, NY, USA (1999).
  • Dal Bello F, Hertel C. Oral cavity as natural reservoir for intestinal lactobacilli. Syst. Appl. Microbiol.29(1), 69–76 (2006).
  • FAO/WHO. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Presented at: Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Cordoba, Argentina, 1–4 October 2001.
  • Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek82(1–4), 279–289 (2002).
  • Roberts M, Chatfield S, Pickard D, Li J, Bacon A. Comparison of abilities of Salmonella enterica serovar typhimurium aroA aroD and aroA htrA mutants to act as live vectors. Infect. Immun.68(10), 6041–6043 (2000).
  • Stevenson A, Roberts M. Use of Bordetella bronchiseptica and Bordetella pertussis as live vaccines and vectors for heterologous antigens. FEMS Immunol. Med. Microbiol.37(2–3), 121–128 (2003).
  • Saklani-Jusforgues H, Fontan E, Soussi N, Milon G, Goossens PL. Enteral immunization with attenuated recombinant Listeria monocytogenes as a live vaccine vector: organ-dependent dynamics of CD4 T lymphocytes reactive to a Leishmania major tracer epitope. Infect. Immun.71(3), 1083–1090 (2003).
  • Pouwels PH, Leer RJ, Shaw M et al. Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int. J. Food Microbiol.41(2), 155–167 (1998).
  • Wells JM, Robinson K, Chamberlain LM, Schofield KM, Le Page RW. Lactic acid bacteria as vaccine delivery vehicles. Antonie Van Leeuwenhoek70(2–4), 317–330 (1996).
  • Hanniffy S, Wiedermann U, Repa A et al. Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv. Appl. Microbiol.56, 1–64 (2004).
  • Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RW. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol.15(7), 653–657 (1997).
  • Grangette C, Muller-Alouf H, Geoffroy M, Goudercourt D, Turneer M, Mercenier A. Protection against tetanus toxin after intragastric administration of two recombinant lactic acid bacteria: impact of strain viability and in vivo persistence. Vaccine20(27–28), 3304–3309 (2002).
  • Maassen CB, Laman JD, den Bak-Glashouwer MJ et al. Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine17(17), 2117–2128 (1999).
  • Plant LJ, Conway PL. Adjuvant properties and colonization potential of adhering and non-adhering Lactobacillus spp following oral administration to mice. FEMS Immunol. Med. Microbiol.34(2), 105–111 (2002).
  • Mercenier A, Pavan S, Pot B. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr. Pharm. Des.9(2), 175–191 (2003).
  • Miettinen M, Vuopio-Varkila J, Varkila K. Production of human tumor necrosis factor a, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun.64(12), 5403–5405 (1996).
  • Marin ML, Tejada-Simon MV, Lee JH, Murtha J, Ustunol Z, Pestka JJ. Stimulation of cytokine production in clonal macrophage and T-cell models by Streptococcus thermophilus: comparison with Bifidobacterium spp. and Lactobacillus bulgaricus. J. Food Prot.61(7), 859–864 (1998).
  • Christensen HR, Frokiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol.168(1), 171–178 (2002).
  • Maassen CB, van Holten-Neelen C, Balk F et al. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine18(23), 2613–2623 (2000).
  • Link-Amster H, Rochat F, Saudan KY, Mignot O, Aeschlimann JM. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol.10(1), 55–63 (1994).
  • Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr. Res.32(2), 141–144 (1992).
  • Mohamadzadeh M, Olson S, Kalina WV et al.Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc. Natl Acad. Sci. USA102(8), 2880–2885 (2005).
  • Kalina WV, Mohamadzadeh M. Lactobacilli as natural enhancer of cellular immune response. Discovery Medicine5(26), 199–203 (2005).
  • Curiel TJ, Morris C, Brumlik M et al. Peptides identified through phage display direct immunogenic antigen to dendritic cells. J. Immunol.172(12), 7425–7431 (2004).
  • Steidler L, Neirynck S, Huyghebaert N et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol.21(7), 785–789 (2003).
  • Braat H, Rottiers P, Hommes DW et al. A Phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol.4(6), 754–759 (2006).
  • Bermudez-Humaran LG, Cortes-Perez NG, Lefevre F et al. A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J. Immunol.175(11), 7297–7302 (2005).
  • Zegers ND, Kluter E, van Der Stap H et al. Expression of the protective antigen of Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax. J. Appl. Microbiol.7(2), 309–314 (1999).
  • Ho PS, Kwang J, Lee YK. Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production. Vaccine23(11), 335–342 (2005).
  • Poo H, Pyo HM, Lee TY et al. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int. J. Cancer119(7), 1702–1709 (2006).
  • Kajikawa A, Satoh E, Leer RJ, Yamamoto S, Igimi S. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine25(18), 3599–3605 (2007).
  • Oliveira ML, Monedero V, Miyaji EN, Leite LC, Lee Ho P, Perez-Martinez G. Expression of Streptococcus pneumoniae antigens, PsaA (pneumococcal surface antigen A) and PspA (pneumococcal surface protein A) by Lactobacillus casei. FEMS Microbiol. Lett.227(1), 25–31 (2003).
  • Lee JS, Poo H, Han DP et al. Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J. Virol.80(8), 4079–4087 (2006).
  • Oliveira ML, Areas AP, Campos IB et al. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect.8(4), 1016–1024 (2006).
  • Corthesy B, Boris S, Isler P, Grangette C, Mercenier A. Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori urease B subunit partially protects against challenge with Helicobacter felis. J. Infect. Dis.192(8), 1441–1449 (2005).
  • Cheun HI, Kawamoto K, Hiramatsu M et al. Protective immunity of SpaA-antigen producing Lactococcus lactis against Erysipelothrix rhusiopathiae infection. J. Appl. Microbiol.96(6), 1347–1353 (2004).
  • Lee MH, Roussel Y, Wilks M, Tabaqchali S. Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice. Vaccine19(28–29), 3927–3935 (2001).
  • Xin KQ, Hoshino Y, Toda Y et al. Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood102(1), 223–228 (2003).
  • Ramasamy R, Yasawardena S, Zomer A, Venema G, Kok J, Leenhouts K. Immunogenicity of a malaria parasite antigen displayed by Lactococcus lactis in oral immunisations. Vaccine24(18), 3900–3908 (2006).
  • Perez CA, Eichwald C, Burrone O, Mendoza D. Rotavirus vp7 antigen produced by Lactococcus lactis induces neutralizing antibodies in mice. J. Appl. Microbiol.99(5), 1158–1164 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.