294
Views
65
CrossRef citations to date
0
Altmetric
Review

Plasmodium falciparum malaria vaccines in development

&
Pages 223-240 | Published online: 09 Jan 2014

References

  • Bejon P, Berkley JA, Mwangi T et al. Defining childhood severe falciparum malaria for intervention studies. PLoS Med.4(8), e251 (2007).
  • Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect. Dis.2, 105–117 (2007).
  • Van Geertruyden JP, D’Alessandro U. Malaria and HIV: a silent alliance. Trends Parasitol.23(10), 465–467 (2007).
  • Idro R, Carter JA, Fegan G, Neville BG, Newton CR. Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch. Dis. Child.91(2), 142–148 (2006).
  • Smith DL, Dushoff J, Snow RW, Hay SI. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature438, 492–495 (2005).
  • Chima RI, Goodman CA, Mills A. The economic impact of malaria in Africa: a critical review of the evidence. Health Policy63(1), 17–36 (2003).
  • Greenwood BM, Bojang K, Whitty CJ, Targett GA. Malaria. Lancet365(9469), 1487–1498 (2005).
  • Moorthy V, Reed Z, Smith PG; WHO Study Group on Measures of Malaria Vaccine Efficacy. Measurement of malaria vaccine efficacy in Phase III trials: report of a WHO consultation. Vaccine25(28), 5115–5123 (2007).
  • Tarantola D, Macklin R, Reed ZH et al. Ethical considerations related to the provision of care and treatment in vaccine trials. Vaccine25(26), 4863–4874 (2007).
  • Sun P, Schwenk R, White K et al. Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4+ and CD8+ T cells producing IFN-γ. J. Immunol.171(12), 6961–6967 (2003).
  • Good MF, Xu H, Wykes M, Engwerda CR. Development and regulation of cell-mediated immune responses to the blood stages of malaria. Implications for vaccine research. Annu. Rev. Immunol.23, 69–99 (2005).
  • Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J. Exp. Med.172(6), 1633–1641 (1990).
  • Haynes JD, Moch JK, Smoot DS. Erythrocytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA. Methods Mol. Med.72, 535–554 (2002).
  • Kumar KA, Oliveira GA, Edelman R, Nardin E, Nussenzweig V. Quantitative Plasmodium sporozoite neutralization assay (TSNA). J. Immunol. Methods292(1–2), 157–164 (2004).
  • Giersing BK, Dubovsky F, Saul A, Denamur F, Minor P, Meade B. Potency assay design for adjuvanted recombinant proteins as malaria vaccines. Vaccine24(20), 4264–4270 (2006).
  • McGregor IA. Mechanisms of acquired immunity and epidemiological patterns of epidemiological responses in malaria in man. Bull. World Health Organ.50, 259–266 (1974).
  • Clyde DF. Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am. J. Trop. Med. Hyg.24(3), 397–401 (1975).
  • Stoute JA, Slaoui M, Heppner DG et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med.336, 86–91 (1997).
  • Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature419(6906), 498–511 (2002).
  • Daily JP, Scanfeld D, Pochet N et al. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature450(7172), 1091–1095 (2007).
  • Volkman SK, Sabeti PC, DeCaprio D et al. A genome-wide map of diversity in Plasmodium falciparum. Nat. Genet.39(1), 113–119 (2007).
  • Hoffman SL, Wistar R, Ballou WR et al. Immunity to malaria and naturally acquired antibodies to the circumsporozoite protein of Plasmodium falciparum. N. Engl. J. Med.315, 601–606 (1986).
  • Plebanski M, Aidoo M, Whittle HC, Hill AV. Precursor frequency analysis of cytotoxic T lymphocytes to pre- erythrocytic antigens of Plasmodium falciparum in West Africa. J. Immunol.158, 2849–2855 (1997).
  • Kumar KA, Sano G, Boscardin S et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature444(7121), 937–940 (2006).
  • Calvo-Calle JM, Oliveira GA, Nardin EH. Human CD4+ T cells induced by synthetic peptide malaria vaccine are comparable to cells elicited by attenuated Plasmodium falciparum sporozoites. J. Immunol.175(11), 7575–7585 (2005).
  • Hoffman SL, Weiss W, Mellouk S, Sedegah M. Irradiated sporozoite vaccine induces cytotoxic T lymphocytes that recognize malaria antigens on the surface of infected hepatocytes. Immunol. Lett.25(1–3), 33–38 (1990).
  • Good MF. Vaccine-induced immunity to malaria parasites and the need for novel strategies. Trends Parasitol.21(1), 29–34 (2005).
  • Blackman MJ, Scott-Finnigan TJ, Shai S, Holder AA. Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. J. Exp. Med.180(1), 389–393 (1994).
  • Cortés A, Carret C, Kaneko O, Yim Lim BY, Ivens A, Holder AA. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog.3(8), e107 (2007).
  • Carter R, Chen DH. Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature263(5572), 57–60 (1976).
  • Gwadz RW. Successful immunization against the sexual stages of Plasmodium gallinaceum. Science193(4258), 1150–1151 (1976).
  • Carter R. Transmission blocking malaria vaccines. Vaccine19(17–19), 2309–2314 (2001).
  • Nussenzweig R, Vanderberg J, Most H. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. IV. Dose response, specificity and humoral immunity. Mil. Med.134(10), 1176–1182 (1969).
  • Rieckmann KH, Beaudoin RL, Cassells JS, Sell KW. Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bull. World Health Organ.57(Suppl. 1), 261–265 (1979).
  • Nardin EH, Nussenzweig RS, Altszuler R et al. Cellular and humoral immune responses to a recombinant P. falciparum CS protein in sporozoite-immunized rodents and human volunteers. Bull. World Health Organ.68(Suppl.), 85–87 (1990).
  • Krzych U, Lyon JA, Jareed T et al. T lymphocytes from volunteers immunized with irradiated Plasmodium falciparum sporozoites recognize liver and blood stage malaria antigens. J. Immunol.155(8), 4072–4077 (1995).
  • Hoffman SL, Goh LM, Luke TC et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis.185(8), 1155–1164 (2002).
  • Bejon P, Andrews L, Andersen RF et al. Calculation of liver-to-blood inocula, parasite growth rates, and pre-erythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis.191(4), 619–626 (2005).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet366(9502), 2012–2018 (2005).
  • Kappe SH, Buscaglia CA, Nussenzweig V. Plasmodium sporozoite molecular cell biology. Annu. Rev. Cell Dev. Biol.20, 29–59 (2004).
  • Singh AP, Buscaglia CA, Wang Q et al. Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell131(3), 492–504 (2007).
  • Dame JB, Williams JL, McCutchan TF et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science225, 593–599 (1984).
  • Enea V, Ellis J, Zavala F et al. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science225, 628–630 (1984).
  • Hollingdale MR, Nardin EH, Tharavanij S, Schwartz AL, Nussenzweig RS. Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. J. Immunol.132(2), 909–913 (1984).
  • Ballou WR, Rothbard J, Wirtz RA et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science228, 996–999 (1985).
  • Potocnjak P, Yoshida N, Nussenzweig RS, Nussenzweig V. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. J. Exp. Med.151(6), 1504–1513 (1980).
  • Spitalny GL, Rivera-Ortiz CI, Nussenzweig RS. Plasmodium berghei: the spleen in sporozoite-induced immunity to mouse malaria. Exp. Parasitol.40(2), 179–188 (1976).
  • Verhave JP, Strickland GT, Jaffe HA, Ahmed A. Studies on the transfer of protective immunity with lymphoid cells from mice immune to malaria sporozoites. J. Immunol.121(3), 1031–1033 (1978).
  • Egan JE, Weber JL, Ballou WR et al. Efficacy of murine malaria sporozoite vaccines: implications for human vaccine development. Science236(4800), 453–456 (1987).
  • Good MF, Doolan DL. Immune effector mechanisms in malaria. Curr. Opin. Immunol.11(4), 412–419 (1999).
  • Ballou WR, Hoffman SL, Sherwood JA et al. Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet1(8545), 1277–1281 (1987).
  • Brown AE, Singharaj P, Webster HK et al. Safety, immunogenicity and limited efficacy study of a recombinant Plasmodium falciparum circumsporozoite vaccine in Thai soldiers. Vaccine12(2), 102–108 (1994).
  • Vreden SG, Verhave JP, Oettinger T, Sauerwein RW, Meuwissen JH. Phase I clinical trial of a recombinant malaria vaccine consisting of the circumsporozoite repeat region of Plasmodium falciparum coupled to hepatitis B surface antigen. Am. J. Trop. Med. Hyg.45(5), 533–538 (1991).
  • Stewart VA, McGrath SM, Walsh DS et al. Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine24(42–43), 6483–6492 (2006).
  • Kester KE, McKinney DA, Tornieporth N et al; RTS,S Malaria Vaccine Evaluation Group. Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria. J. Infect. Dis.183(4), 640–647 (2001).
  • Stoute JA, Kester KE, Krzych U et al. Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. J. Infect. Dis.178(4), 1139–1144 (1998).
  • Lalvani A, Moris P, Voss G et al. Potent induction of focused Th1-type cellular and humoral immune responses by RTS,S/SBAS2, a recombinant Plasmodium falciparum malaria Vaccine J.Infect. Dis.180(5), 1656–1664 (1999).
  • Bojang KA, Milligan PJ, Pinder M et al; RTS, S Malaria Vaccine Trial Team. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet358(9297), 1927–1934 (2001).
  • Stoute JA, Heppner DG Jr, Mason CJ et al. Phase 1 safety and immunogenicity trial of malaria vaccine RTS,S/AS02A in adults in a hyperendemic region of western Kenya. Am. J. Trop. Med. Hyg.75(1), 166–170 (2006).
  • Bojang KA, Olodude F, Pinder M et al. Safety and immunogenicity of RTS,S/AS02A candidate malaria vaccine in Gambian children. Vaccine23(32), 4148–4157 (2005).
  • Macete EV, Sacarlal J, Aponte JJ et al. Evaluation of two formulations of adjuvanted RTS,S malaria vaccine in children aged 3 to 5 years living in a malaria-endemic region of Mozambique: a Phase I/IIb randomized double-blind bridging trial. Trials26, 8–11 (2007).
  • Macete E, Aponte JJ, Guinovart C et al. Safety and immunogenicity of the RTS,S/AS02A candidate malaria vaccine in children aged 1–4 in Mozambique. Trop. Med. Int. Health.12(1), 37–46 (2007).
  • Alonso PL, Sacarlal J, Aponte JJ et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomized controlled trial. Lancet364, 1411–1420 (2004).
  • Enosse S, Dobano C, Quelhas D et al. RTS,S/AS02A malaria vaccine does not induce parasite CSP T cell epitope selection and reduces multiplicity of infection. PLoS Clin. Trials1(1), e5 (2006).
  • Alloueche A, Milligan P, Conway DJ et al. Protective efficacy of the RTS,S/AS02 Plasmodium falciparum malaria vaccine is not strain specific. Am. J. Trop. Med. Hyg.68(1), 97–101 (2003).
  • Aponte JJ, Aide P, Renom M et al. Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled Phase I/IIb trial. Lancet370, 1543–1551 (2007).
  • Polhemus ME. A Phase IIb randomized, double-blind, controlled study of the safety, immunogenicity and proof-of-concept of RTS,S/AS02A, and RTS,S/AS01B, two candidate malaria vaccines in malaria-experienced adults living in Western Kenya. Presented at: 55th ASTMH Annual Meeting. Atlanta, GA, USA, 12–26 November 2006.
  • Lell B. A randomized, observer-blind trial to compare safety and immunogenicity of two adjuvanted RTS,S anti-malaria vaccine candidates in Gabonese children. Presented at: 56th ASTMH Annual Meeting. Philadelphia, PA, USA, 4–8 November 2007.
  • Webster DP, Dunachie S, Vuola JM et al. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl Acad. Sci. USA102(13), 4836–4841 (2005).
  • McConkey SJ, Reece WH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med.9(6), 729–735 (2003).
  • Moorthy VS, McConkey S, Roberts M et al. Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine21(17–18), 1995–2002 (2003).
  • Moorthy VS, Imoukhuede EB, Milligan P et al. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med.1(2), e33 (2004).
  • Bejon P, Mwacharo J, Kai O et al. A Phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin. Trials1(6), e29 (2006).
  • Bejon P, Ogada E, Mwangi T et al. Extended follow-up following a Phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS ONE2(1), e707 (2007).
  • Weedall GD, Preston BM, Thomas AW, Sutherland CJ, Conway DJ. Differential evidence of natural selection on two leading sporozoite stage malaria vaccine candidate antigens. Int. J. Parasitol.37(1), 77–85 (2007).
  • Bruna-Romero O, Gonzalez-Aseguinolaza G, Hafalla JC, Tsuji M, Nussenzweig RS. Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc. Natl Acad. Sci. USA98(20), 11491–11496 (2001).
  • Barouch DH, Pau MG, Custers JH et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J. Immunol.172(10), 6290–6297 (2004).
  • Stewart VA, McGrath SM, Dubois PM et al. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared with that with either malaria vaccine alone. Infect. Immun.75(5), 2283–2290 (2007).
  • Ophorst OJ, Radosevic K, Klap JM et al. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant. Vaccine25(35), 6501–6510 (2007).
  • Wang R, Doolan DL, Le TP et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science282(5388), 476–480 (1998).
  • Wang R, Epstein J, Baraceros FM et al. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc. Natl Acad. Sci. USA98(19), 10817–10822 (2001).
  • Wang R, Epstein J, Charoenvit Y et al. Induction in humans of CD8+ and CD4+ T cell and antibody responses by sequential immunization with malaria DNA and recombinant protein. J. Immunol.172, 5561–5569 (2004).
  • Dunachie SJ, Walther M, Epstein JE et al. A DNA prime-modified vaccinia virus Ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect. Immun.74(10), 5933–5942 (2006).
  • John CC, Moormann AM, Pregibon DC et al. Correlation of high levels of antibodies to multiple pre-erythrocytic Plasmodium falciparum antigens and protection from infection. Am J. Trop. Med. Hyg.73(1), 222–228 (2005).
  • Kurtis JD, Hollingdale MR, Luty AJ, Lanar DE, Krzych U, Duffy PE. Pre-erythrocytic immunity to Plasmodium falciparum: the case for an LSA-1 vaccine. Trends Parasitol.17(5), 219–223 (2001).
  • Hillier CJ, Ware LA, Barbosa A et al. Process development and analysis of liver-stage antigen 1, a pre-erythrocyte-stage protein-based vaccine for Plasmodium falciparum. Infect. Immun.73(4), 2109–2115 (2005).
  • Epstein JE, Giersing B, Mullen G, Moorthy V, Richie TL. Malaria vaccines: are we getting closer? Curr. Opin. Mol. Ther.9(1), 12–24 (2007).
  • Daubersies P, Thomas AW, Millet P et al. Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nat. Med.6(11), 1258–1263 (2000). Erratum in: Nat. Med.6(12), 1412 (2000).
  • Perlaza BL, Sauzet JP, Balde AT et al. Long synthetic peptides encompassing the Plasmodium falciparum LSA3 are the target of human B and T cells and are potent inducers of B helper, T helper and cytolytic T cell responses in mice. Eur. J. Immunol.31(7), 2200–2209 (2001).
  • Sauzet JP, Perlaza BL, Brahimi K, Daubersies P, Druilhe P. DNA immunization by Plasmodium falciparum liver-stage antigen 3 induces protection against Plasmodium yoelii sporozoite challenge. Infect. Immun.69(2), 1202–1206 (2001).
  • Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med.5(3), 340–343 (1999).
  • Cohen S, McGregor IA, Carrington S. γ-globulin and acquired immunity to human malaria. Nature192, 733–737 (1961).
  • Pombo DJ, Lawrence G, Hirunpetcharat C et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet360, 610–617 (2002).
  • Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion- inhibiting antibodies. J. Exp. Med.172, 379–382 (1990).
  • Quin SJ, Seixas EM, Cross CA et al. Low CD4(+) T cell responses to the C-terminal region of the malaria merozoite surface protein-1 may be attributed to processing within distinct MHC class II pathways. Eur. J. Immunol. (1), 72–81 (2001).
  • Branch OH, Udhayakumar V, Hightower AW et al. A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19-kiloDalton domain of Plasmodium falciparum in pregnant women and infants: associations with febrile illness, parasitemia, and anemia. Am. J. Trop. Med. Hyg.58(2), 211–219 (1998).
  • John CC, O’Donnell RA, Sumba PO et al. Evidence that invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein-1 (MSP-119) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. J. Immunol.173, 666–672 (2004).
  • Guevara Patino JA, Holder AA, McBride JS, Blackman MJ. Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J. Exp. Med.186(10), 1689–1699 (1997).
  • Ockenhouse CF, Angov E, Kester KE et al.; MSP-1 Working Group. Phase I safety and immunogenicity trial of FMP1/AS02A, a Plasmodium falciparum MSP-1 asexual blood stage vaccine. Vaccine24(15), 3009–3017 (2006).
  • Stoute JA, Gombe J, Withers MR et al.; MSP-1 Malaria Vaccine Working Group. Phase 1 randomized double-blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya. Vaccine25(1), 176–184 (2007).
  • Thera MA, Doumbo OK, Coulibaly D et al; Mali FMP1 Working Group. Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a Phase I randomized trial. PLoS Clin. Trials1(7), e34 (2006).
  • Withers MR, McKinney D, Ogutu BR et al; MSP-1 Malaria Vaccine Working Group. Safety and reactogenicity of an MSP-1 malaria vaccine candidate: a randomized Phase Ib dose-escalation trial in Kenyan children. PLoS Clin. Trials1(7), e32 (2007).
  • Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J. Exp. Med.182(2), 409–418 (1995).
  • Oeuvray C, Bouharoun-Tayoun H, Gras-Masse H et al. Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood84(5), 1594–1602 (1994).
  • Badell E, Oeuvray C, Moreno A et al. Human malaria in immunocompromised mice: an in vivo model to study defense mechanisms against Plasmodium falciparum. J. Exp. Med.192, 1653–1660 (2000).
  • Roussilhon C, Oeuvray C, Müller-Graf C et al. Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med.4(11), e320 (2007).
  • Hisaeda H, Saul A, Reece JJ et al. Merozoite surface protein 3 and protection against malaria in Aotus nancymai monkeys. J. Infect. Dis.185(5), 657–664 (2002).
  • Audran R, Cachat M, Lurati F et al. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect. Immun.73(12), 8017–8026 (2005).
  • Druilhe P, Spertini F, Soesoe D et al. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med.2(11), e344 (2005).
  • Bannister LH, Hopkins JM, Dluzewski AR et al. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J. Cell Sci.116(Pt 18), 3825–3834 (2003).
  • Silvie O, Franetich JF, Charrin S et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J. Biol. Chem.279(10), 9490–9496 (2004).
  • Polley SD, Mwangi T, Kocken CH et al. Human antibodies to recombinant protein constructs of Plasmodium falciparum apical membrane antigen 1 (AMA1) and their associations with protection from malaria. Vaccine23(5), 718–728 (2004).
  • Dutta S, Haynes JD, Barbosa A et al. Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. Infect. Immun.73(4), 2116–2122 (2005).
  • Pizarro JC, Vulliez-Le NB, Chesne-Seck M-L et al. Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science308(5720), 408–411 (2005).
  • Bai T, Becker M, Gupta A et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc. Natl Acad. Sci. USA102(36), 12736–12741 (2005).
  • Dutta S, Lee SY, Batchelor AH, Lanar DE. Structural basis of antigenic escape of a malaria vaccine candidate. Proc. Natl Acad. Sci. USA104(30), 12488–12493 (2007).
  • Gupta A, Bai T, Murphy V, Strike P, Anders RF, Batchelor AH. Refolding, purification, and crystallization of apical membrane antigen 1 from Plasmodium falciparum. Protein Expr. Purif.41(1), 186–198 (2005).
  • Lalitha PV, Ware LA, Barbosa A et al. Production of the subdomains of the Plasmodium falciparum apical membrane antigen 1 ectodomain and analysis of the immune response. Infect. Immun.72(8), 4464–4470 (2004).
  • Heppner DG Jr, Kester KE, Ockenhouse CF et al. Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine23(17–18), 2243–2250 (2005).
  • Dicko A. Randomized, controlled, Phase 2 study of the safety and immunogenicity of AMA1-C1/Alhydrogel vaccine for Plasmodium falciparum malaria in children from Bancoumana, Mali. Presented at: 56th ASTMH Annual Meeting. Philadelphia, Pennsylvania, USA, 4–8 November 2007.
  • Stowers AW, Kennedy MC, Keegan BP, Saul A, Long CA, Miller LH. Vaccination of monkeys with recombinant Plasmodium falciparum apical membrane antigen 1 confers protection against blood-stage malaria. Infect. Immun.70(12), 6961–6967 (2002).
  • Malkin EM, Diemert DJ, McArthur JH et al. Phase 1 clinical trial of apical membrane antigen 1: an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect. Immun.73(6), 3677–3685 (2005).
  • Mullen GED, Giersing BK, Ajose-Popoola O et al. Enhancement of functional antibody responses to AMA1-C1/Alhydrogel®, a Plasmodium falciparum malaria vaccine, with CpG oligodeoxynucleotide. Vaccine24, 2497–2505 (2006).
  • Kocken CH, Withers-Martinez C, Dubbeld MA et al. High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion. Infect. Immun.70(8), 4471–4476 (2002). Erratum in: Infect. Immun.70(10), 5901 (2002).
  • Li J, Matsuoka H, Mitamura T, Horii T. Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol. Biochem. Parasitol.120(2), 177–186 (2002).
  • Pang XL, Mitamura T, Horii T. Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect. Immun.67(4), 1821–1827 (1999).
  • Soe S, Singh S, Camus D, Horii T, Druilhe P. Plasmodium falciparum serine repeat protein, a new target of monocyte-dependent antibody-mediated parasite killing. Infect. Immun.70(12), 7182–7184 (2002).
  • Peek LJ, Brandau DT, Jones LS, Joshi SB, Middaugh CR. A systematic approach to stabilizing EBA-175 RII-NG for use as a malaria vaccine. Vaccine24, 5839–5851 (2006).
  • Mamillapalli A, Pattnaik P, Sharma M et al. Sequence polymorphisms in the receptor-binding domain of Plasmodium falciparum EBA-175: implications for malaria vaccine development. Mol. Biochem. Parasitol.146(1), 120–123 (2006).
  • Epstein JE, Charoenvit Y, Kester KE et al. Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A. Vaccine22, 1592–1603 (2004).
  • Dunachie SJ, Walther M, Vuola JM et al. A clinical trial of prime–boost immunisation with the candidate malaria vaccines RTS,S/AS02A and MVA-CS. Vaccine24(15), 2850–2859 (2006).
  • Kammer AR, Amacker M, Rasi S et al. A new and versatile virosomal antigen delivery system to induce cellular and humoral immune responses. Vaccine25(41), 7065–7074 (2007).
  • Okitsu SL, Kienzl U, Moehle K et al. Structure–activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation. Chem. Biol.14(5), 577–587 (2007).
  • Mueller MS, Renard A, Boato F et al. Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop I from domain III of Plasmodium falciparum apical membrane antigen 1. Infect. Immun.71(8), 4749–4758 (2003).
  • Genton B, Betuela I, Felger I. A recombinant blood–stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a Phase 1–2b trial in Papua New Guinea. J. Infect. Dis.185, 820–827 (2002).
  • Flück C, Schöpflin S, Smith T et al. Effect of the malaria vaccine combination B on merozoite surface antigen 2 diversity. Infect. Genet. Evol.7(1), 44–51 (2007).
  • Pan W, Huang D, Zhang Q et al. Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro. J. Immunol.172(10), 6167–6174 (2004).
  • Theisen M, Soe S, Brunstedt K et al. A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine22(9–10), 1188–1198 (2004).
  • Hermsen CC, Verhage DF, Telgt DS et al. Glutamate-rich protein (GLURP) induces antibodies that inhibit in vitro growth of Plasmodium falciparum in a Phase 1 malaria vaccine trial. Vaccine25(15), 2930–2940 (2007).
  • Freitas-Junior LH, Bottius E, Pirrit LA et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature407(6807), 1018–1022 (2000).
  • Chen Q, Pettersson F, Vogt AM et al. Immunization with PfEMP1-DBL1a generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine22(21–22), 2701–2712 (2004).
  • Graves PM, Doubrovsky A, Carter R, Eida S, Beckers P. High frequency of antibody response to Plasmodium falciparum gametocyte antigens during acute malaria infections in Papua New Guinea highlanders. Am. J. Trop. Med. Hyg.42, 515–520 (1990).
  • Duffy PE, Kaslow DC. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect. Immun.65(3), 1109–1113 (1997).
  • Malkin EM, Durbin AP, Diemert DJ et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine23(24), 3131–3138 (2005).
  • Luke TC, Hoffman SL. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J. Exp. Biol.206, 3803–3808 (2003).
  • Ballou WR. Obstacles to the development of a safe and effective attenuated pre-erythrocytic stage malaria vaccine. Microbes Infect.9, 761–766 (2007).
  • Fraser CK, Diener KR, Brown MP, Hayball JD. Improving vaccines by incorporating immunological coadjuvants. Expert Rev. Vaccines6(4), 559–578 (2007).
  • Li S, Locke E, Bruder J et al. Viral vectors for malaria vaccine development. Vaccine25(14), 2567–2574 (2007).
  • Mueller AK, Labaied M, Kappe SH, Matuschewski K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature433(7022), 164–167 (2005). Erratum in: Nature446(7131), 102 (2007).
  • Van Dijk MR, Douradinha B, Franke-Fayard B et al. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc. Natl Acad. Sci. USA102(34), 12194–12199 (2005).
  • Mueller AK, Camargo N, Kaiser K et al. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc. Natl Acad. Sci. USA102(8), 3022–3027 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.