166
Views
19
CrossRef citations to date
0
Altmetric
Special Focus Issue: Cancer Vaccines - Review

Protein/peptide and DNA vaccine delivery by targeting C-type lectin receptors

, , &
Pages 1005-1018 | Published online: 09 Jan 2014

References

  • Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J.272(24), 6179–6217 (2005).
  • Drickamer K, Fadden AJ. Genomic analysis of C-type lectins. Biochem. Soc. Symp.(69), 59–72 (2002).
  • Ampel NM, Nelson DK, Li L et al. The mannose receptor mediates the cellular immune response in human coccidioidomycosis. Infect. Immun.73(4), 2554–2555 (2005).
  • Lloyd DH, Viac J, Werling D, Reme CA, Gatto H. Role of sugars in surface microbe–host interactions and immune reaction modulation. Vet. Dermatol.18(4), 197–204 (2007).
  • Colmenares M, Puig-Kroger A, Pello OM, Corbi AL, Rivas L. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J. Biol. Chem.277(39), 36766–36769 (2002).
  • de Witte L, Abt M, Schneider-Schaulies S, van Kooyk Y, Geijtenbeek TB. Measles virus targets DC-SIGN to enhance dendritic cell infection. J. Virol.80(7), 3477–3486 (2006).
  • Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int. J. Exp. Pathol.86(4), 187–204 (2005).
  • Soilleux EJ. DC-SIGN (dendritic cell-specific ICAM-grabbing non-integrin) and DC-SIGN-related (DC-SIGNR): friend or foe? Clin. Sci. (Lond.)104(4), 437–446 (2003).
  • Soilleux EJ, Sarno EN, Hernandez MO et al. DC-SIGN association with the Th2 environment of lepromatous lesions: cause or effect? J. Pathol.209(2), 182–189 (2006).
  • Apostolopoulos V, Pietersz GA, Tsibanis A et al. Pilot Phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res.8(3), R27 (2006).
  • Levitz SM, Specht CA. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res.6(4), 513–524 (2006).
  • Mahnke K, Guo M, Lee S et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell. Biol.151(3), 673–684 (2000).
  • Sheng KC, Kalkanidis M, Pouniotis DS et al. Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur. J. Immunol.38(2), 424–436 (2008).
  • Chieppa M, Bianchi G, Doni A et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol.171(9), 4552–4560 (2003).
  • Nonaka M, Ma BY, Murai R et al. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J. Immunol.180(5), 3347–3356 (2008).
  • Shan M, Klasse PJ, Banerjee K et al. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog.3(11), e169 (2007).
  • Torrelles JB, Azad AK, Schlesinger LS. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J. Immunol.177(3), 1805–1816 (2006).
  • Lam JS, Huang H, Levitz SM. Effect of differential N-linked and O-linked mannosylation on recognition of fungal antigens by dendritic cells. PLoS ONE2(10), e1009 (2007).
  • Engering AJ, Cella M, Fluitsma D et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol.27(9), 2417–2425 (1997).
  • Tan MC, Mommaas AM, Drijfhout JW et al. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol.27(9), 2426–2435 (1997).
  • Engering A, Geijtenbeek TB, van Vliet SJ et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol.168(5), 2118–2126 (2002).
  • Feinberg H, Mitchell DA, Drickamer K, Weis WI. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science294(5549), 2163–2166 (2001).
  • Pietrella D, Bistoni G, Corbucci C, Perito S, Vecchiarelli A. Candida albicans mannoprotein influences the biological function of dendritic cells. Cell Microbiol.8(4), 602–612 (2006).
  • Sheng KC, Pouniotis DS, Wright MD et al. Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology118(3), 372–383 (2006).
  • Nagaoka K, Takahara K, Tanaka K et al. Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in Gram-negative bacteria. Int. Immunol.17(7), 827–836 (2005).
  • Doz E, Rose S, Nigou J et al. Acylation determines the Toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J. Biol. Chem.282(36), 26014–26025 (2007).
  • Quesniaux VJ, Nicolle DM, Torres D et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J. Immunol.172(7), 4425–4434 (2004).
  • Dzionek A, Sohma Y, Nagafune J et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med.194(12), 1823–1834 (2001).
  • Meyer-Wentrup F, Benitez-Ribas D, Tacken PJ et al. Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production. Blood111(8), 4245–4253 (2008).
  • Chen CH, Floyd H, Olson NE et al. Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood107(4), 1459–1467 (2006).
  • Dillon S, Agrawal S, Banerjee K et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest.116(4), 916–928 (2006).
  • Valera I, Fernandez N, Trinidad AG et al. Costimulation of dectin-1 and DC-SIGN triggers the arachidonic acid cascade in human monocyte-derived dendritic cells. J. Immunol.180(8), 5727–5736 (2008).
  • Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood108(9), 3168–3175 (2006).
  • Kantchev EA, Chang CC, Chang DK. Direct Fmoc/tert-Bu solid phase synthesis of octamannosyl polylysine dendrimer–peptide conjugates. Biopolymers84(2), 232–240 (2006).
  • Kel J, Oldenampsen J, Luca M, Drijfhout JW, Koning F, Nagelkerken L. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. Am. J. Pathol.170(1), 272–280 (2007).
  • Mommaas AM, Mulder AA, Jordens R et al. Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules. Eur. J. Immunol.29(2), 571–580 (1999).
  • Brimble MA, Kowalczyk R, Harris PW, Dunbar PR, Muir VJ. Synthesis of fluorescein-labelled O-mannosylated peptides as components for synthetic vaccines: comparison of two synthetic strategies. Org. Biomol. Chem.6(1), 112–121 (2008).
  • Moyle PM, Olive C, Ho MF et al. Toward the development of prophylactic and therapeutic human papillomavirus type-16 lipopeptide vaccines. J. Med. Chem.50(19), 4721–4727 (2007).
  • Lam JS, Mansour MK, Specht CA, Levitz SM. A model vaccine exploiting fungal mannosylation to increase antigen immunogenicity. J. Immunol.175(11), 7496–7503 (2005).
  • Luong M, Lam JS, Chen J, Levitz SM. Effects of fungal N- and O-linked mannosylation on the immunogenicity of model vaccines. Vaccine25(22), 4340–4344 (2007).
  • Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol. Ther.6(4), 481–486 (2007).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine14(9), 930–938 (1996).
  • Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF. Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc. Natl Acad. Sci. USA92(22), 10128–10132 (1995).
  • Lofthouse SA, Apostolopoulos V, Pietersz GA, Li W, McKenzie IF. Induction of T1 (cytotoxic lymphocyte) and/or T2 (antibody) responses to a mucin-1 tumour antigen. Vaccine15(14), 1586–1593 (1997).
  • Apostolopoulos V, Barnes N, Pietersz GA, McKenzie IF. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine18(27), 3174–3184 (2000).
  • Apostolopoulos V, Pietersz GA, Gordon S, Martinez-Pomares L, McKenzie IF. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur. J. Immunol.30(6), 1714–1723 (2000).
  • Zhong G, Wang J, Xu M et al. Enhanced maturation and functional capacity of dendritic cells induced by mannosylated L2 domain of ErbB2 receptor. Scand. J. Immunol.62(2), 108–116 (2005).
  • Aarnoudse CA, Bax M, Sanchez-Hernandez M, Garcia-Vallejo JJ, van Kooyk Y. Glycan modification of the tumor antigen gp100 targets DC-SIGN to enhance dendritic cell induced antigen presentation to T cells. Int. J. Cancer122(4), 839–846 (2008).
  • Srinivas O, Larrieu P, Duverger E et al. Synthesis of glycocluster-tumor antigenic peptide conjugates for dendritic cell targeting. Bioconjug. Chem.18(5), 1547–1554 (2007).
  • Agnes MC, Tan A, Jordens R et al. Strongly increased efficiency of altered peptide ligands by mannosylation. Int. Immunol.10(9), 1299–1304 (1998).
  • Charalambous A, Oks M, Nchinda G, Yamazaki S, Steinman RM. Dendritic cell targeting of survivin protein in a xenogeneic form elicits strong CD4+ T cell immunity to mouse survivin. J. Immunol.177(12), 8410–8421 (2006).
  • Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res.65(15), 7007–7012 (2005).
  • Do Y, Park CG, Kang YS et al. Broad T cell immunity to the LcrV virulence protein is induced by targeted delivery to DEC-205/CD205-positive mouse dendritic cells. Eur. J. Immunol.38(1), 20–29 (2008).
  • Bozzacco L, Trumpfheller C, Siegal FP et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl Acad. Sci. USA104(4), 1289–1294 (2007).
  • Trumpfheller C, Caskey M, Nchinda G et al. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc. Natl Acad. Sci. USA105(7), 2574–2579 (2008).
  • Trumpfheller C, Finke JS, Lopez CB et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med.203(3), 607–617 (2006).
  • Ramakrishna V, Treml JF, Vitale L et al. Mannose receptor targeting of tumor antigen pmel17 to human dendritic cells directs anti-melanoma T cell responses via multiple HLA molecules. J. Immunol.172(5), 2845–2852 (2004).
  • He LZ, Crocker A, Lee J et al. Antigenic targeting of the human mannose receptor induces tumor immunity. J. Immunol.178(10), 6259–6267 (2007).
  • He LZ, Ramakrishna V, Connolly JE et al. A novel human cancer vaccine elicits cellular responses to the tumor-associated antigen, human chorionic gonadotropin β. Clin. Cancer Res.10(6), 1920–1927 (2004).
  • Ramakrishna V, Vasilakos JP, Tario JD Jr, Berger MA, Wallace PK, Keler T. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells. J. Transl. Med.5, 5 (2007).
  • Neethling FA, Ramakrishna V, Keler T, Buchli R, Weidanz JA. Assessing vaccine potency using TCRmimic antibodies. Vaccine (2008).
  • Idoyaga J, Cheong C, Suda K et al. Cutting edge: langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J. Immunol.180(6), 3647–3650 (2008).
  • Carter RW, Thompson C, Reid DM, Wong SY, Tough DF. Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J. Immunol.177(4), 2276–2284 (2006).
  • Delneste Y, Magistrelli G, Gauchat J et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17(3), 353–362 (2002).
  • Tacken PJ, de Vries IJ, Gijzen K et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood106(4), 1278–1285 (2005).
  • Kretz-Rommel A, Qin F, Dakappagari N et al.In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J. Immunother.30(7), 715–726 (2007).
  • Dakappagari N, Maruyama T, Renshaw M et al. Internalizing antibodies to the C-type lectins, L-SIGN and DC-SIGN, inhibit viral glycoprotein binding and deliver antigen to human dendritic cells for the induction of T cell responses. J. Immunol.176(1), 426–440 (2006).
  • Corbett AJ, Caminschi I, McKenzie BS et al. Antigen delivery via two molecules on the CD8- dendritic cell subset induces humoral immunity in the absence of conventional “danger”. Eur. J. Immunol.35(10), 2815–2825 (2005).
  • Luca ME, Kel JM, van Rijs W, Wouter Drijfhout J, Koning F, Nagelkerken L. Mannosylated PLP(139–151) induces peptide-specific tolerance to experimental autoimmune encephalomyelitis. J. Neuroimmunol.160(1–2), 178–187 (2005).
  • Kel JM, de Geus ED, van Stipdonk MJ, Drijfhout JW, Koning F, Nagelkerken L. Immunization with mannosylated peptide induces poor T cell effector functions despite enhanced antigen presentation. Int. Immunol.20(1), 117–127 (2008).
  • Mukhopadhaya A, Hanafusa T, Jarchum I et al. Selective delivery of β cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8+ T cells in NOD mice. Proc. Natl Acad. Sci. USA105(17), 6374–6379 (2008).
  • Pietersz GA, Tang CK, Apostolopoulos V. Structure and design of polycationic carriers for gene delivery. Mini Rev. Med. Chem.6(12), 1285–1298 (2006).
  • Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem.263(29), 14621–14624 (1988).
  • Gijzen K, Cambi A, Torensma R, Figdor CG. C-type lectins on dendritic cells and their interaction with pathogen-derived and endogenous glycoconjugates. Curr. Protein Pept. Sci.7(4), 283–294 (2006).
  • Diebold SS, Plank C, Cotten M, Wagner E, Zenke M. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells. Somat. Cell. Mol. Genet.27(1–6), 65–74 (2002).
  • Diebold SS, Kursa M, Wagner E, Cotten M, Zenke M. Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J. Biol. Chem.274(27), 19087–19094 (1999).
  • Erbacher P, Bousser MT, Raimond J, Monsigny M, Midoux P, Roche AC. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum. Gene Ther.7(6), 721–729 (1996).
  • Ferkol T, Perales JC, Mularo F, Hanson RW. Receptor-mediated gene transfer into macrophages. Proc. Natl Acad. Sci. USA93(1), 101–105 (1996).
  • Diebold SS, Lehrmann H, Kursa M, Wagner E, Cotten M, Zenke M. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection. Hum. Gene Ther.10(5), 775–786 (1999).
  • Kim TH, Jin H, Kim HW, Cho MH, Cho CS. Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol. Cancer Ther.5(7), 1723–1732 (2006).
  • Fajac I, Grosse S, Briand P, Monsigny M. Targeting of cell receptors and gene transfer efficiency: a balancing act. Gene Ther.9(11), 740–742 (2002).
  • Grosse S, Tremeau-Bravard A, Aron Y, Briand P, Fajac I. Intracellular rate-limiting steps of gene transfer using glycosylated polylysines in cystic fibrosis airway epithelial cells. Gene Ther.9(15), 1000–1007 (2002).
  • Hattori Y, Kawakami S, Lu Y, Nakamura K, Yamashita F, Hashida M. Enhanced DNA vaccine potency by mannosylated lipoplex after intraperitoneal administration. J. Gene Med.8(7), 824–834 (2006).
  • Liang WW, Shi X, Deshpande D, Malanga CJ, Rojanasakul Y. Oligonucleotide targeting to alveolar macrophages by mannose receptor-mediated endocytosis. Biochim. Biophys. Acta1279(2), 227–234 (1996).
  • Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther.4(8), 823–832 (1997).
  • Tang C-K, Sheng K-C, Pouniotis D et al. Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine26(31), 3827–3834 (2008).
  • Kim TH, Nah JW, Cho MH, Park TG, Cho CS. Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J. Nanosci. Nanotechnol.6(9–10), 2796–2803 (2006).
  • Lu Y, Kawakami S, Yamashita F, Hashida M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials28(21), 3255–3262 (2007).
  • Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against hepatitis B. Immunol. Lett.101(1), 41–49 (2005).
  • Zhou X, Liu B, Yu X et al. Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J. Control. Release121(3), 200–207 (2007).
  • Sasaki S, Fukushima J, Arai H et al. Human immunodeficiency virus type-1-specific immune responses induced by DNA vaccination are greatly enhanced by mannan-coated diC14-amidine. Eur. J. Immunol.27(12), 3121–3129 (1997).
  • Toda S, Ishii N, Okada E et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-γ antibody. Immunology92(1), 111–117 (1997).
  • Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods40(1), 1–9 (2006).
  • Hattori Y, Kawakami S, Nakamura K, Yamashita F, Hashida M. Efficient gene transfer into macrophages and dendritic cells by in vivo gene delivery with mannosylated lipoplex via the intraperitoneal route. J. Pharmacol. Exp. Ther.318(2), 828–834 (2006).
  • Hashimoto M, Morimoto M, Saimoto H et al. Gene transfer by DNA/mannosylated chitosan complexes into mouse peritoneal macrophages. Biotechnol. Lett.28(11), 815–821 (2006).
  • Sakurai F, Nishioka T, Yamashita F, Takakura Y, Hashida M. Effects of erythrocytes and serum proteins on lung accumulation of lipoplexes containing cholesterol or DOPE as a helper lipid in the single-pass rat lung perfusion system. Eur. J. Pharm. Biopharm.52(2), 165–172 (2001).
  • Hattori Y, Kawakami S, Suzuki S, Yamashita F, Hashida M. Enhancement of immune responses by DNA vaccination through targeted gene delivery using mannosylated cationic liposome formulations following intravenous administration in mice. Biochem. Biophys. Res. Commun.317(4), 992–999 (2004).
  • Opanasopit P, Higuchi Y, Kawakami S, Yamashita F, Nishikawa M, Hashida M. Involvement of serum mannan binding proteins and mannose receptors in uptake of mannosylated liposomes by macrophages. Biochim. Biophys. Acta1511(1), 134–145 (2001).
  • Opanasopit P, Hyoudou K, Nishikawa M, Yamashita F, Hashida M. Serum mannan binding protein inhibits mannosylated liposome-mediated transfection to macrophages. Biochim. Biophys. Acta1570(3), 203–209 (2002).
  • Hattori Y, Suzuki S, Kawakami S, Yamashita F, Hashida M. The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. J. Control. Release108(2–3), 484–495 (2005).
  • Demangel C, Zhou J, Choo AB, Shoebridge G, Halliday GM, Britton WJ. Single chain antibody fragments for the selective targeting of antigens to dendritic cells. Mol. Immunol.42(8), 979–985 (2005).
  • Nchinda G, Kuroiwa J, Oks M et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Invest.118(4), 1427–1436 (2008).
  • Korokhov N, de Gruijl TD, Aldrich WA et al. High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biol. Ther.4(3), 289–294 (2005).
  • Karanikas V, Hwang LA, Pearson J et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan–MUC1 fusion protein. J. Clin. Invest.100(11), 2783–2792 (1997).
  • Karanikas V, Lodding J, Maino VC, McKenzie IF. Flow cytometric measurement of intracellular cytokines detects immune responses in MUC1 immunotherapy. Clin. Cancer Res.6(3), 829–837 (2000).
  • Karanikas V, Thynne G, Mitchell P et al. Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J. Immunother.24(2), 172–183 (2001).
  • Apostolopoulos V, Lofthouse SA, Popovski V, Chelvanayagam G, Sandrin MS, McKenzie IF. Peptide mimics of a tumor antigen induce functional cytotoxic T cells. Nat. Biotechnol.16(3), 276–280 (1998).
  • Apostolopoulos V, Osinski C, McKenzie IF. MUC1 cross-reactive Gal α(1,3)Gal antibodies in humans switch immune responses from cellular to humoral. Nat. Med.4(3), 315–320 (1998).
  • Apostolopoulos V, Sandrin MS, McKenzie IF. Mimics and cross reactions of relevance to tumour immunotherapy. Vaccine18(3–4), 268–275 (1999).
  • Loveland BE, Zhao A, White S et al. Mannan–MUC1-pulsed dendritic cell immunotherapy: a Phase I trial in patients with adenocarcinoma. Clin. Cancer Res.12(3 Pt 1), 869–877 (2006).
  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med.196(12), 1627–1638 (2002).
  • Bonifaz LC, Bonnyay DP, Charalambous A et al.In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med.199(6), 815–824 (2004).
  • Valladeau J, Duvert-Frances V, Pin JJ et al. Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis. J. Immunol.167(10), 5767–5774 (2001).
  • Zhou T, Chen Y, Hao L, Zhang Y. DC-SIGN and immunoregulation. Cell. Mol. Immunol.3(4), 279–283 (2006).
  • Carter RW, Thompson C, Reid DM, Wong SY, Tough DF. Induction of CD8+ T cell responses through targeting of antigen to dectin-2. Cell. Immunol.239(2), 87–91 (2006).
  • Kanazawa N. Dendritic cell immunoreceptors: C-type lectin receptors for pattern-recognition and signaling on antigen-presenting cells. J. Dermatol. Sci.45(2), 77–86 (2007).
  • McGreal EP, Rosas M, Brown GD et al. The carbohydrate-recognition domain of dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology16(5), 422–430 (2006).
  • Fanning SL, George TC, Feng D et al. Receptor cross-linking on human plasmacytoid dendritic cells leads to the regulation of IFN-α production. J. Immunol177(9), 5829–5839 (2006).
  • Fujikado N, Saijo S, Yonezawa T et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med.14(2), 176–180 (2008).
  • Ryan EJ, Marshall AJ, Magaletti D et al. Dendritic cell-associated lectin-1: a novel dendritic cell-associated, C-type lectin-like molecule enhances T cell secretion of IL-4. J. Immunol.169(10), 5638–5648 (2002).
  • Sobanov Y, Bernreiter A, Derdak S et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur. J. Immunol.31(12), 3493–3503 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.