217
Views
44
CrossRef citations to date
0
Altmetric
Special Focus Issue: Cancer Vaccines - Review

DNA vaccination and gene therapy: optimization and delivery for cancer therapy

&
Pages 1085-1101 | Published online: 09 Jan 2014

References

  • Mantovani A, Romero P, Palucka AK, Marincola FM. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet371(9614), 771–783 (2008).
  • van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254(5038), 1643–1647 (1991).
  • Beyer M, Schultze JL. Immunoregulatory T cells: role and potential as a target in malignancy. Curr. Oncol. Rep.10(2), 130–136 (2008).
  • Rescigno M, Avogadri F, Curigliano G. Challenges and prospects of immunotherapy as cancer treatment. Biochim. Biophys. Acta1776(1), 108–123 (2007).
  • Prud’homme GJ. DNA vaccination against tumors. J. Gene Med.7(1), 3–17 (2005).
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer8(2), 108–120 (2008).
  • Marshall J. Carcinoembryonic antigen-based vaccines. Semin. Oncol.30(3 Suppl. 8), 30–36 (2003).
  • Renard V, Leach DR. Perspectives on the development of a therapeutic HER-2 cancer vaccine. Vaccine25(Suppl. 2), B17–B23 (2007).
  • Park JM, Terabe M, Steel JC et al. Therapy of advanced established murine breast cancer with a recombinant adenoviral ErbB-2/neu vaccine. Cancer Res.68(6), 1979–1987 (2008).
  • Curcio C, Khan AS, Amici A et al. DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice. Cancer Gene Ther.15(2), 108–114 (2008).
  • Atallah E, Flaherty L. Treatment of metastatic malignant melanoma. Curr. Treat. Options Oncol.6(3), 185–193 (2005).
  • Agostino NM, Ali A, Nair SG, Mosca PJ. Current immunotherapeutic strategies in malignant melanoma. Surg. Oncol. Clin. N. Am.16(4), 945–973, xi (2007).
  • Vujanovic L, Butterfield LH. Melanoma cancer vaccines and anti-tumor T cell responses. J. Cell. Biochem.102(2), 301–310 (2007).
  • Wagner E. Advances in cancer gene therapy: tumor-targeted delivery of therapeutic pDNA, siRNA, and dsRNA nucleic acids. J. BUON12(Suppl. 1), S77–S82 (2007).
  • Jechlinger W. Optimization and delivery of plasmid DNA for vaccination. Expert Rev. Vaccines5(6), 803–825 (2006).
  • Li X, Eastman EM, Schwartz RJ, Draghia-Akli R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol.17(3), 241–245 (1999).
  • Wright A, Semyonov A, Dawes G et al. Diverse plasmid DNA vectors by directed molecular evolution of cytomegalovirus promoters. Hum. Gene Ther.16(7), 881–892 (2005).
  • Chen P, Tian J, Kovesdi I, Bruder JT. Promoters influence the kinetics of transgene expression following adenovector gene delivery. J. Gene Med.10(2), 123–131 (2008).
  • Tai CK, Kasahara N. Replication-competent retrovirus vectors for cancer gene therapy. Front. Biosci.13, 3083–3095 (2008).
  • Wierstra I, Alves J. The c-myc promoter: still MysterY and challenge. Adv. Cancer Res.99, 113–333 (2008).
  • Kelly BJ, Fleeton MN, Atkins GJ. Potential of alphavirus vectors in the treatment of advanced solid tumors. Recent Patents Anticancer Drug Discov.2(2), 159–166 (2007).
  • Chen JS, Liu JC, Shen L et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther.11(11), 740–747 (2004).
  • Lu B, Makhija SK, Nettelbeck DM et al. Evaluation of tumor-specific promoter activities in melanoma. Gene Ther.12(4), 330–338 (2005).
  • Bodles-Brakhop AM, Brown PA, Pope MA, Draghia-Akli R. Double-blinded, placebo-controlled plasmid GHRH trial for cancer-associated anemia in dogs. Mol. Ther.16(5), 862–870 (2008).
  • Draghia-Akli R, Hahn KA, King GK, Cummings K, Carpenter RH. Effects of plasmid mediated growth hormone releasing hormone in severely debilitated dogs with cancer. Mol. Ther.6(6), 830–836 (2002).
  • Yan J, Harris K, Khan AS, Draghia-Akli R, Sewell DA, Weiner DB. Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensus protein in mice and rhesus macaques. Vaccine (2008) DOI: 10.1016/j.vaccine.2008.03.069 (Epub ahead of print).
  • Tone CM, Cardoza DM, Carpenter RH, Draghia-Akli R. Long-term effects of plasmid-mediated growth hormone releasing hormone in dogs. Cancer Gene Ther.11(5), 389–396 (2004).
  • Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci.98(10), 1505–1511 (2007).
  • Disbrow GL, Sunitha I, Baker CC, Hanover J, Schlegel R. Codon optimization of the HPV-16 E5 gene enhances protein expression. Virology311(1), 105–114 (2003).
  • Cid-Arregui A, Juarez V, zur Hausen H. A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J. Virol.77(8), 4928–4937 (2003).
  • Cheung YK, Cheng SC, Sin FW, Xie Y. Plasmid encoding papillomavirus type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine23(5), 629–638 (2004).
  • Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology116(2), 255–266 (2005).
  • Ahmed A, Thompson J, Emiliusen L et al. A conditionally replicating adenovirus targeted to tumor cells through activated RAS/P-MAPK-selective mRNA stabilization. Nat. Biotechnol.21(7), 771–777 (2003).
  • Hirao L, Wu L, Khan AS et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine26(25), 3112–3120 (2008).
  • Draghia-Akli R, Pope MA, Brown PA, Khan AS. Plasmid-based expression technology using growth hormone releasing hormone: a novel method for physiologically stimulating long-term growth hormone secretion. Comb. Chem. High Throughput Screen9(3), 181–185 (2006).
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv. Drug Deliv. Rev.60(7), 795–804 (2008).
  • Verthelyi D. Adjuvant properties of CpG oligonucleotides in primates. Methods Mol. Med.127, 139–158 (2006).
  • McCluskie MJ, Weeratna RD, Davis HL. The role of CpG in DNA vaccines. Springer Semin. Immunopathol.22(1–2), 125–132 (2000).
  • Schneeberger A, Wagner C, Zemann A et al. CpG motifs are efficient adjuvants for DNA cancer vaccines. J. Invest. Dermatol.123(2), 371–379 (2004).
  • Bertin S, Anjuere F, Gavelli A et al. Plasmidic CpG sequences induce tumor microenvironment modifications in a rat liver metastasis model. Int. J. Mol. Med.21(3), 309–315 (2008).
  • Coban C, Ishii KJ, Gursel M, Klinman DM, Kumar N. Effect of plasmid backbone modification by different human CpG motifs on the immunogenicity of DNA vaccine vectors. J. Leukoc. Biol.78(3), 647–655 (2005).
  • Raykov Z, Grekova S, Leuchs B, Aprahamian M, Rommelaere J. Arming parvoviruses with CpG motifs to improve their oncosuppressive capacity. Int. J. Cancer122(12), 2880–2884 (2008).
  • Bequet-Romero M, Ayala M, Acevedo BE et al. Prophylactic naked DNA vaccination with the human vascular endothelial growth factor induces an anti-tumor response in C57Bl/6 mice. Angiogenesis10(1), 23–34 (2007).
  • Murad YM, Clay TM, Lyerly HK, Morse MA. CPG-7909 (PF-3512676, ProMune): Toll-like receptor-9 agonist in cancer therapy. Expert Opin. Biol. Ther.7(8), 1257–1266 (2007).
  • Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol.6(8), 595–601 (2006).
  • Cheng WF, Chang MC, Sun WZ et al. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther.15(13), 1007–1016 (2008).
  • Hsieh CY, Chen CA, Huang CY et al. IL-6-encoding tumor antigen generates potent cancer immunotherapy through antigen processing and anti-apoptotic pathways. Mol. Ther.15(10), 1890–1897 (2007).
  • Ferrone CR, Perales MA, Goldberg SM et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin. Cancer Res.12(18), 5511–5519 (2006).
  • Qin H, Zhou C, Wang D et al. Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology117(3), 419–430 (2006).
  • Lin CT, Tsai YC, He L et al. DNA vaccines encoding IL-2 linked to HPV-16 E7 antigen generate enhanced E7-specific CTL responses and antitumor activity. Immunol.Lett.114(2), 86–93 (2007).
  • Snyder LA, Goletz TJ, Gunn GR et al. A MUC1/IL-18 DNA vaccine induces anti-tumor immunity and increased survival in MUC1 transgenic mice. Vaccine24(16), 3340–3352 (2006).
  • Marshall DJ, Rudnick KA, McCarthy SG et al. Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine24(3), 244–253 (2006).
  • Yang TC, Millar JB, Grinshtein N, Bassett J, Finn J, Bramson JL. T-cell immunity generated by recombinant adenovirus vaccines. Expert Rev. Vaccines6(3), 347–356 (2007).
  • Yang ZR, Wang HF, Zhao J et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther.14(7), 599–615 (2007).
  • Park K, Kim WJ, Cho YH et al. Cancer gene therapy using adeno-associated virus vectors. Front Biosci.13, 2653–2659 (2008).
  • Li C, Bowles DE, van DT, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther.12(12), 913–925 (2005).
  • Coura RS, Nardi NB. The state of the art of adeno-associated virus-based vectors in gene therapy. Virol. J.4, 99 (2007).
  • Hedley SJ, Chen J, Mountz JD et al. Targeted and shielded adenovectors for cancer therapy. Cancer Immunol.Immunother.55(11), 1412–1419 (2006).
  • Zhu ZB, Rivera AA, Makhija SK et al. Targeting lung cancer using an infectivity enhanced CXCR4-CRAd. Lung Cancer55(2), 145–156 (2007).
  • Zhu ZB, Chen Y, Makhija SK et al. Survivin promoter-based conditionally replicative adenoviruses target cholangiocarcinoma. Int. J. Oncol.29(5), 1319–1329 (2006).
  • Egami T, Ohuchida K, Mizumoto K et al. Radiation enhances adenoviral gene therapy in pancreatic cancer via activation of cytomegalovirus promoter and increased adenovirus uptake. Clin.Cancer Res.14(6), 1859–1867 (2008).
  • Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res.132(1–2), 1–14 (2008).
  • Sekaly RP. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp.Med.205(1), 7–12 (2008).
  • Pandha HS, Martin LA, Rigg A et al. Genetic prodrug activation therapy for breast cancer: a Phase I clinical trial of erbB-2-directed suicide gene expression. J. Clin.Oncol.17(7), 2180–2189 (1999).
  • Heller LC, Ugen K, Heller R. Electroporation for targeted gene transfer. Expert. Opin. Drug Deliv.2(2), 255–268 (2005).
  • Heller LC, Heller R. In vivo electroporation for gene therapy. Hum. Gene Ther.17(9), 890–897 (2006).
  • Cemazar M, Sersa G. Electrotransfer of therapeutic molecules into tissues. Curr.Opin. Mol .Ther.9(6), 554–562 (2007).
  • Cemazar M, Golzio M, Sersa G, Rols MP, Teissie J. Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand? Curr. Pharm. Des.12(29), 3817–3825 (2006).
  • Laddy DJ, Yan J, Kutzler M et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens. PLoS ONE3(6), e2517 (2008).
  • Rosati M, Valentin A, Jalah R et al. Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine DOI: 10.1016/j.vaccine.2008.03.090 (2008) [Epub ahead of print].
  • Keegan ME, Saltzman WM. Surface-modified biodegradable microspheres for DNA vaccine delivery. Methods Mol. Med.127, 107–113 (2006).
  • Mahato RI. Water insoluble and soluble lipids for gene delivery. Adv. Drug Deliv. Rev.57(5), 699–712 (2005).
  • Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release114(1), 100–109 (2006).
  • Tang CK, Lodding J, Minigo G et al. Mannan-mediated gene delivery for cancer immunotherapy. Immunology120(3), 325–335 (2007).
  • Hartikka J, Geall A, Bozoukova V et al. Physical characterization and evaluation of poloxamer-based DNA vaccine formulations. J. Gene Med.10, 770–782 (2008).
  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J.1(7), 841–845 (1982).
  • Draghia-Akli R, Khan AS, Brown PA et al. Parameters for DNA vaccination using adaptive constant-current electroporation in mouse and pig models. Vaccine DOI: 10.1016/j.vaccine.2008.03.071 (2008) [Epub ahead of print].
  • Khan AS, Pope MA, Draghia-Akli R. Highly efficient constant-current electroporation increases in vivo plasmid expression. DNA Cell Biol.24(12), 810–818 (2005).
  • Cemazar M, Pavlin D, Kranjc S, Grosel A, Mesojednik S, Sersa G. Sequence and time dependence of transfection efficiency of electrically-assisted gene delivery to tumors in mice. Curr. Drug Deliv.3(1), 77–81 (2006).
  • Mesojednik S, Pavlin D, Sersa G et al. The effect of the histological properties of tumors on transfection efficiency of electrically assisted gene delivery to solid tumors in mice. Gene Ther.14, 1261–1269 (2007).
  • Kalat M, Kupcu Z, Schuller S et al.In vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res.62(19), 5489–5494 (2002).
  • Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a ‘prime/boost’ strategy for naked DNA vaccination against a tumor antigen. J. Immunol.174(10), 6292–6298 (2005).
  • Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther.13(2), 320–327 (2006).
  • Fredriksen AB, Sandlie I, Bogen B. DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells. Mol. Ther.13(4), 776–785 (2006).
  • Manome Y, Nakamura M, Ohno T, Furuhata H. Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo. Hum. Gene Ther.11(11), 1521–1528 (2000).
  • Dittmar KM, Xie J, Hunter F et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology235(2), 541–546 (2005).
  • Kusumanto YH, Mulder NH, Dam WA, Losen MH, Meijer C, Hospers GA. Improvement of in vivo transfer of plasmid DNA in muscle: comparison of electroporation versus ultrasound. Drug Deliv.14(5), 273–277 (2007).
  • Rakhmilevich AL, Turner J, Ford MJ et al. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc. Natl Acad. Sci. USA93(13), 6291–6296 (1996).
  • Oshikawa K, Ishii Y, Hamamoto T, Sugiyama Y, Kitamura S, Kagawa Y. Particle-mediated gene transfer of murine interleukin-12 cDNA suppresses the growth of Lewis lung carcinoma. In Vivo13(5), 397–402 (1999).
  • Cassaday RD, Sondel PM, King DM et al. A Phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin. Cancer Res.13(2 Pt 1), 540–549 (2007).
  • Sharma R, Sharma CL. Quadrivalent human papillomavirus recombinant vaccine: the first vaccine for cervical cancers. J. Cancer Res. Ther.3(2), 92–95 (2007).
  • Hoos A, Parmiani G, Hege K et al. A clinical development paradigm for cancer vaccines and related biologics. J. Immunother.30(1), 1–15 (2007).
  • Bergman PJ, Camps-Palau MA, McKnight JA et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine24(21), 4582–4585 (2006).
  • Bergman PJ, McKnight J, Novosad A et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a Phase I trial. Clin. Cancer Res.9(4), 1284–1290 (2003).
  • Liao JC, Gregor P, Wolchok JD et al. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun.6, 8 (2006).
  • Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi FF. Prevention and treatment of cancer cachexia: new insights into an old problem. Eur. J. Cancer42(1), 31–41 (2006).
  • Veldhuis JD, Iranmanesh A, Weltman A. Elements in the pathophysiology of diminished growth hormone (GH) secretion in aging humans. Endocrine7(1), 41–48 (1997).
  • Ekenstedt KJ, Sonntag WE, Loeser RF, Lindgren BR, Carlson CS. Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on osteoarthritis severity in rat knee joints. Arthritis Rheum.54(12), 3850–3858 (2006).
  • Khan AS, Anscombe IW, Cummings KK, Pope MA, Smith LC, Draghia-Akli R. Growth hormone releasing hormone plasmid supplementation, a potential treatment for cancer cachexia, does not increase tumor growth in nude mice. Cancer Gene Ther.12(1), 54–60 (2005).
  • Jorritsma A, Bins AD, Schumacher TN, Haanen JB. Skewing the T-cell repertoire by combined DNA vaccination, host conditioning, and adoptive transfer. Cancer Res.68(7), 2455–2462 (2008).
  • Garcia-Hernandez ML, Gray A, Hubby B, Klinger OJ, Kast WM. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res.68(3), 861–869 (2008).
  • Steinaa L, Rasmussen PB, Gautam A, Mouritsen S. Breaking B-cell tolerance and CTL tolerance in three OVA-transgenic mouse strains expressing different levels of OVA. Scand. J. Immunol.67(2), 113–120 (2008).
  • Jeon YH, Choi Y, Kim HJ et al.In vivo bioluminescence visualization of antitumor effects by human MUC1 vaccination. Mol. Imaging6(5), 297–303 (2007).
  • Wang YS, Wang GQ, Wen YJ et al. Immunity against tumor angiogenesis induced by a fusion vaccine with murine β-defensin 2 and mFlk-1. Clin. Cancer Res.13(22 Pt 1), 6779–6787 (2007).
  • Mkrtichyan M, Ghochikyan A, Loukinov D et al. DNA, but not protein vaccine based on mutated BORIS antigen significantly inhibits tumor growth and prolongs the survival of mice. Gene Ther.15(1), 61–64 (2008).
  • Bos R, van DS, van HT et al. Characterization of antigen-specific immune responses induced by canarypox virus vaccines. J. Immunol.179(9), 6115–6122 (2007).
  • Orlandi F, Venanzi FM, Concetti A et al. Antibody and CD8+ T cell responses against HER2/neu required for tumor eradication after DNA immunization with a Flt-3 ligand fusion vaccine. Clin. Cancer Res.13(20), 6195–6203 (2007).
  • Kim D, Hoory T, Wu TC, Hung CF. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life and intracellular targeting strategies with a strategy to boost CD4+ T cells. Hum. Gene Ther.18(11), 1129–1139 (2007).
  • Zhu K, Qin H, Cha SC et al. Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models. Vaccine25(46), 7955–7961 (2007).
  • Huang CY, Chen CA, Lee CN et al. DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol. Oncol.107(3), 404–412 (2007).
  • Yo YT, Hsu KF, Shieh GS et al. Coexpression of Flt3 ligand and GM-CSF genes modulates immune responses induced by HER2/neu DNA vaccine. Cancer Gene Ther.14(11), 904–917 (2007).
  • Oh S, Pluhar GE, McNeil EA et al. Efficacy of nonviral gene transfer in the canine brain. J. Neurosurg.107(1), 136–144 (2007).
  • Scardino A, Alimandi M, Correale P et al. A polyepitope DNA vaccine targeted to Her-2/ErbB-2 elicits a broad range of human and murine CTL effectors to protect against tumor challenge. Cancer Res.67(14), 7028–7036 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.