91
Views
4
CrossRef citations to date
0
Altmetric
Special Focus Issue: Cancer Vaccines - Review

Vaccine therapy for renal cancer

Pages 925-935 | Published online: 09 Jan 2014

References

  • Godley PA, Taylor M. Renal cell carcinoma. Curr. Opin. Oncol.13, 199–203 (2001).
  • Amato RJ. Chemotherapy for renal cell carcinoma. Semin. Oncol.27, 177–186 (2000).
  • Bukowski RM. Cytokine therapy for metastatic renal cell carcinoma. Semin. Urol. Oncol.19, 148–154 (2001).
  • Ritossa FA. New puffing pattern induced by temperature shock and DNP in Drosophilia. Experientia18, 571–573 (1962).
  • Srivastava PK. Immunotherapy for human cancer using heat shock protein–peptide complexes. Curr. Oncol. Rep.7, 104–108 (2005).
  • Zhu X, Zhao X, Burkholder WF et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science272, 1606–1614 (1996).
  • Macary PA, Javid B, Floto RA et al. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity20, 95–106 (2004).
  • Linderoth NA, Popowicz A, Sastry, S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen GP96 (Grp94). J. Biol. Chem.272, 5472–5477 (2000).
  • Baker-Lepain JC, Saarzotti M, Fields TA, Li CY, Nicchitta CV. GRP94 (GP96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J. Exp. Med.196, 1447–1459 (2002).
  • Gidalevitz T, Biswas C, Ding H et al. Identification of the N-terminal peptide binding site of glucose-regulated protein 94. J. Biol. Chem.279, 16543–16552 (2004).
  • Goetz MP, Toft DO, Ames MM et al. The HSP90 chaperone complex as a novel target for cancer therapy. Ann. Oncol.14, 1169–1176 (2003).
  • Ishii T, Udono H, Yamano T et al. Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins HSP70, HSP90, and GP96. J. Immunol.162, 1303–1309 (1999).
  • Sponaas AM, Zuegel U, Weber S et al. Immunization with GP96 from Listeria monocytogenes-infected mice is due to N-formylated listerial peptides. J. Immunol.167, 6480–6486 (2001).
  • Meng SD, Song J, Rao Z et al. Three-step purification of GP96 from human liver tumor tissues suitable for isolation of GP96-bound peptides. J. Immunol. Methods264, 29–35 (2002).
  • Grossmann ME, Madden BJ, Gao F et al. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp. Cell Res.297, 108–117 (2004).
  • Demine R, Walden P. Testing the role of GP96 as peptide chaperone in antigen processing. J. Biol. Chem.280, 17573–17578 (2005).
  • Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol.20, 395–425 (2002).
  • Przepiorka D, Srivastava PK. Heat shock protein–peptide complexes as immunotherapy for human cancer. Mol. Med. Today.4, 478–484 (1998).
  • Srivastava PK, Amato RJ. Heat shock proteins: the “Swiss Army knife” vaccines against cancers and infectious agents. Vaccine19, 590–2597 (2001).
  • Srivastava P. Roles of heat shock proteins in innate and adaptive immunity. Nat. Rev. Immunol.2, 185–194 (2002).
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein GP96. Nat. Immunol.1, 151–155 (2000).
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins GP96, HSP90, HSP70, and calreticulin. Immunity14, 303–313 (2001).
  • Banerjee PP, Vinay DS, Mathew A et al. Evidence that glycoprotein 96 (B2), a stress protein, functions as a Th2-specific costimulatory molecule. J. Immunol.169, 3507–3518 (2002).
  • Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of GP96-chaperoned peptides. Proc. Natl Acad. Sci. USA101, 6128–6133 (2004).
  • Park JE, Facciponte J, Chen X et al. Chaperoning function of stress protein grp170, a member of the HSP70 superfamily, is responsible for its immunoadjuvant activity. Cancer Res.66, 1161–1168 (2006).
  • Kim HL, Sun X, Subjeck JR, Wang XY. Evaluation of renal cell carcinoma vaccines targeting carbonic anhydrase IX using heat shock protein 110. Cancer Immunol. Immunother.56, 1097–1105 (2007).
  • Li Y, Subjeck J, Yang G, Repasky E et al. Generation of anti-tumor immunity using mammalian heat shock protein 70 DNA vaccines for cancer immunotherapy. Vaccine24, 5360–5370 (2006).
  • Gomez-Gutierrez JG, Elpek KG et al. Vaccination with an adenoviral vector expressing calreticulin–human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol. Immunother.56, 997–1007 (2007).
  • Strbo N, Yamazaki K, Lee K. Heat shock fusion protein GP96-Ig mediates strong CD8 CTL expansion in vivo. Am. J. Reprod. Immunol.48, 220–225 (2002).
  • Sengupta D, Norris PJ, Suscovich TJ et al. Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J. Immunol.173, 1987–1993 (2004).
  • Doody AD, Kovalchin JT, Mihalyo MA et al. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T-cell effector function. J. Immunol.172, 6087–6092 (2004).
  • Rapp UK, Kaufmann SH. DNA vaccination with GP96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. Int. Immunol.16, 597–605 (2004).
  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278, 117–120 (1997).
  • Parmiani G, Testori A, Maio M et al. Heat shock proteins and their use as anticancer vaccines. Clin. Cancer Res.10, 8142–8146 (2004).
  • Janetzki S, Palla D, Rosenhauer V. Immunization of cancer patients with autologous cancer-derived heat shock protein GP96 preparations: a pilot study. Int. J. Cancer.88, 232–238 (2000).
  • Amato R, Murray L, Wood L et al. Active specific immunotherapy in patients with renal cell carcinoma (RCC) using autologous tumor derived heat shock protein–peptide complex-96 (HSPP-96) vaccine. Proc. Am. Soc. Clin. Oncol.18, 322a (1999).
  • Assikis VJ, Dallani D, Pagliaro L et al. Phase II study of an autologous tumor derived heat shock protein–peptide complex vaccine (HSPPC-96) for patients with metastatic renal cell carcinoma (mRCC). Proc. Am. Soc. Clin. Oncol.22, 386 (2003).
  • Wood CG, Escudier B, Lacombe L et al. A multicenter randomized Phase 3 trial of a novel autologous therapeutic vaccine (vitespen) vs observation adjuvant therapy in patients at high-risk of recurrence after nephrectomy for renal cell carcinoma (RCC). Proceedings of the AUA Annual Meeting Program Abstracts177, 212 (2007).
  • Harrop R, John J, Carroll MW. Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev.58, 931–947 (2006).
  • Harrop R, Carroll MW. Viral vectors for cancer immunotherapy. Frontiers in Bioscience11, 804–817 (2006).
  • Hole N, Stern PL. A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br. J. Cancer57, 237–246 (1988).
  • Southall P, Boxer G, Bagshaw K et al. Immunological distribution of 5T4 antigen in normal and malignant tissues. Br. J. Cancer61, 89–95 (1990).
  • Starzynska T, Marsh P, Schofield P et al. Prognostic significance of 5T4 oncofoetal antigen expression in colorectal carcinoma. Br. J. Cancer69, 899–902 (1994).
  • Griffiths RW, Gilham DE, Dangoor A et al. Expression of the 5T4 oncofoetal antigen in renal cell carcinoma: a potential target for T-cell-based immunotherapy. Br. J. Cancer93, 670–677 (2005).
  • Barrow KM, Ward CM, Rutter J. Embryonic expression of murine 5T4 oncofoetal antigen is associated with morphogenetic events at implantation and in developing epithelia. Dev. Dyn.233, 1535–1545 (2005).
  • Carsberg C, Myers KA, Stern PL. Metastasis-associated 5T4 antigen disrupts cell–cell contacts and induces cellular motility in ephithelial cells. Int. J. Cancer68, 84–92 (1996).
  • Carroll MW, Restifo NP. Poxviruses as vectors for cancer immunotherapy. In: Cancer Vaccines and Immunotherapy. Stern PL et al. (Eds). Cambridge University Press, Cambridge, UK 47–65 (2000).
  • Sutter G, Moss B. Non-replicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl Acad. Sci. USA89, 10847–10851 (1992).
  • Rochlitz C, Figlin R, Squiban P et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J. Gene Med.5, 690–699 (2003).
  • Eder J, Kantoff P, Roper K et al. A Phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res.6, 1632–1638 (2000).
  • Marshall J, Hoyer R, Toomey M et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol.18, 3964–3973 (2000).
  • Harrop R, Ryan M. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T-cell dependent and antibody mediated. Cancer Immunol. Immunother.55, 1081–1090 (2006).
  • Mulryan K, Ryan MG, Myers KA et al. Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors. Mol. Cancer Ther.1, 1129–1137 (2002).
  • Redchenko I, Harrop R, Ryan MG et al. Identification of a major histocompatibility complex class I-restricted epitope in the tumour-associated antigen, 5T4. Immunology118, 50–57 (2006).
  • Harrop R, Connolly NB, Redchenko I et al. Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a Phase I/II Trial. Clin. Cancer Res.12, 3416–3424 (2006).
  • Harrop R, Drury N, Shingler W et al. Vaccination of colorectal cancer patients with modified vaccinia Ankara encoding the tumor antigen 5T4 (TroVax) given alongside chemotherapy induces potent immune responses. 57(7), 977–986 (2008).
  • Harrop R, Hawkins RE, Anthoney A et al. An open label Phase II study of modified vaccinia Ankara (MVA) expressing the tumor antigen 5T4 given in conjunction with chemotherapy: safety and immunogenicity before, during and after chemotherapy. Proceedings of the 2005 ASCO Annual Meeting23, 2578 (2005).
  • Dangoor A, Burt D, Harrop R et al. A vaccinia-based vaccine (TroVax) targeting the oncofetal antigen 5T4 administered before and after surgical resection of colorectal cancer liver metastases: Phase II trial. Proceedings of the 2006 ASCO Annual Meeting24, 2574 (2006).
  • Kaufman HL, Deraffele G, Mitcham J et al. A Phase I clinical trial of MVA expressing 5T4 and high-dose interleukin-2 (IL-2) for metastatic renal cell carcinoma. Proceedings of the 2006 ASCO Annual Meeting Proceedings Part I24, 12500 (2006).
  • Cao A, Hernandez-McClain J, Willis J et al. Activity of MVA 5T4 alone or in combination with either interleukin-2, interferon-a in patients with metastatic renal cell cancer. Proceedings of the 2007 ASCO Annual Meeting25, 135s (2007).
  • Amato R, Karediy M, Cao A et al. Phase II trial to assess the activity of MVA 5T4 (TroVax) alone versus MVA 5T4 plus granulocyte macrophage colony-stimulating factor in patients with progressive hormone refractory prostate cancer. Proceedings of the 2007 ASCO Annual Meeting25, 241s (2007)
  • Motzer R, Mazumdar M, Bacik J et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol.17, 2530–2540 (1999)
  • Yang J, Sherry R, Steinberg S et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cell cancer. J. Clin. Oncol.21, 3127–3132 (2003).
  • Höltl L, Rieser C, Papesh C et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J. Urol.161, 777–82 (1999).
  • Rieser C, Ramoner R, Holtl L et al. Mature dendritic cells induce T-helper type-1-dominant immune responses in patients with metastatic renal cell carcinoma. Urol. Int.63, 151–159 (2000).
  • Kugler A, Stuhler G, Walden P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med.6, 332–336 (2000).
  • Chang AE, Li Q, Jiang G et al. A Phase II trial of anti-CD3 activated,vaccine-primed lymphocytes in stage IV renal cell cancer. Proc. Am. Soc. Clin. Oncol.21, 3a (2002).
  • Gurjal A, Dansey RD, Klein JL et al. Phase II trial of specific cellular immunotherapy in renal cell carcinoma (RCC). Proc. Am. Soc. Clin. Oncol.20, 222b (2001).
  • Doehn C, Richter A, Lehmacher W et al. Multicenter Phase III trial to compare radical nephrectomy plus adjuvant autologous tumor cell-lysate vaccine versus radical nephrectomy without adjuvant treatment for renal cell carcinoma stages pT2–3bpN0–3m0: a 3 year analysis. Proc. Am. Soc. Clin. Oncol.21, 180a (2002).
  • Galligioni E, Quaia M, Merlo A et al. Adjuvant immunotherapy treatment of renal carcinoma patients with autologous tumor cells and bacilus Calmette–Guerin: five-year results of a prospective randomized study. Cancer77, 2560–2566 (1996).
  • Dillman RO, Barth NM, VanderMolen LA et al. Treatment of kidney cancer with autologous tumor cell vaccines of short-term cell lines derived from renal cell carcinoma. Cancer Biother. Radiopharm.16, 47–54 (2001).
  • Dudek AZ, Mescher MF, Okazaki I et al. Autologous large multivalent immunogen vaccine in patients with metastatic melanoma and renal cell carcinoma. Am. J. Clin. Oncol.31, 173–181 (2008).
  • Fishman M, Hunter TB, Soliman H et al. Phase II trial of B7–1 (CD-86) transduced, cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma. J. Immunother.31, 72–80 (2008)
  • Desai J, Mithcell P, Loveland B et al. A Phase I trial of dendritic cells pulsed with MUC1 peptide in patients with solid tumors. Proc. Am. Soc. Clin. Oncol.21, 15b (2002).
  • Vissers JLM, De Vries JM, Schreurs MWJ et al. The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res.59, 5554–5559 (1999).
  • Tso C-L, Zisman A, Pantuck A et al. Induction of G250-targeted and T-cell-mediated antitumor activity against renal cell carcinoma using a chimeric fusion protein consisting of G250 and granulocyte/monocyte-colony stimulating factor. Cancer Res.61, 7925–7933 (2001).
  • Hsu FJ, Komarovskaya M. Idiotype-specific T-cell activation/amplification using CTLA4 blockade and targeting of tumor to dendritic cells. Proc. Am. Soc. Clin. Oncol.21, 25a (2002).
  • Okazaki I, Mescher M, Curtsinger J et al. An autologous large multivalent immunogen (LMI) vaccine for the treatment of metastatic melanoma and renal cell carcinoma. Proc. Am. Soc. Clin. Oncol.21, 20a (2002).
  • Avigan DE, Vasir B, George DJ et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J. Immunother.30, 749–761 (2007).
  • Bleumer I, Tiemessen DM, Oosterwijk-Wakka JC et al. Preliminary analysis of patients with progressive renal cell carcinoma vaccinated with CA9-peptide-pulsed mature dendritic cells. J. Immunother.30, 116–122 (2007).
  • Ishii T, Udono H, Yamano T et al. Isolation of MHC Class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J. Immunol.162, 1303–1309 (1999).
  • Castelli C, Ciupitu A-M, Rini F et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res.61, 222–227 (2001).
  • Belli F, Testori A, Rivoltini L et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein GP96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol.20, 4169–4180 (2002).
  • Richards J, Testori A, Whitman E et al. Autologous tumor-derived HSPPC-96 vs. physician’s choice (PC) in a randomized Phase III trial in stage IV melanoma. 2006 ASCO Annual Meeting Proceedings, Atlanta, USA 2006 (Abstract 8002).
  • Pilla L, Patuzzo R, Rivoltini L et al. A Phase II trial of vaccination with autologous, tumor-derived heat shock protein peptide complexes GP96, in combination with GM-CSF and interferon-α in metastatic melanoma patients. Cancer. Immunol. Immunother.55, 958–968 (2006).
  • Mazzaferro V, Coppa J, Carrabba MG et al. Vaccination with autologous tumor-derived heat shock protein GP96 after liver resection for metastatic colorectal cancer. Clin. Cancer Res.9, 3235–3245 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.