675
Views
50
CrossRef citations to date
0
Altmetric
Themed Article: General - Reviews

Investigational drugs targeting cardiac fibrosis

, , , , &

References

  • Beltrami CA, Finato N, Rocco M et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89(1), 151–163 (1994).
  • Diez J, Laviades C, Mayor G, Gil MJ, Monreal I. Increased serum concentrations of procollagen peptides in essential hypertension. Relation to cardiac alterations. Circulation 91(5), 1450–1456 (1995).
  • Dostal DE. Regulation of cardiac collagen: Angiotensin and cross-talk with local growth factors. Hypertension 37(3), 841–844 (2001).
  • Grossman W. Diastolic dysfunction and congestive heart failure. Circulation 81(2 Suppl.), III1–III7 (1990).
  • Masci PG, Barison A, Aquaro GD et al. Myocardial delayed enhancement in paucisymptomatic nonischemic dilated cardiomyopathy. Int. J. Cardiol. 157(1), 43–47 (2012).
  • Marijianowski MM, Teeling P, Mann J, Becker AE. Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J. Am. Coll. Cardiol. 25(6), 1263–1272 (1995).
  • Blauwet LA, Ackerman MJ, Edwards WD, Riehle DL, Ommen SR. Myocardial fibrosis in patients with symptomatic obstructive hypertrophic cardiomyopathy: correlation with echocardiographic measurements, sarcomeric genotypes, and pro-left ventricular hypertrophy polymorphisms involving the renin-angiotensin-aldosterone system. Cardiovasc. Pathol. 18(5), 262–268 (2009).
  • Factor SM, Butany J, Sole MJ, Wigle ED, Williams WC, Rojkind M. Pathologic fibrosis and matrix connective tissue in the subaortic myocardium of patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 17(6), 1343–1351 (1991).
  • Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ. Res. 64(6), 1041–1050 (1989).
  • Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102(12), 1388–1393 (2000).
  • Tan AY, Zimetbaum P. Atrial fibrillation and atrial fibrosis. J. Cardiovasc. Pharmacol. 57(6), 625–629 (2011).
  • Zeisberg EM, Tarnavski O, Zeisberg M et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13(8), 952–961 (2007).
  • Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc. Ther. 30(1), e30–40 (2012).
  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3(5), 349–363 (2002).
  • Hinz B, Phan SH, Thannickal VJ et al. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am. J. Pathol. 180(4), 1340–1355 (2012).
  • Barker TH, Baneyx G, Cardo-Vila M et al. Sparc regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J. Biol. Chem. 280(43), 36483–36493 (2005).
  • Horiguchi M, Ota M, Rifkin DB. Matrix control of transforming growth factor-beta function. J. Biochem. 152(4), 321–329 (2012).
  • Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10(1), 15–26 (2013).
  • Wei H, Bedja D, Koitabashi N et al. Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of tgf-beta signaling. Proc. Natl Acad. Sci. USA 109(14), E841–850 (2012).
  • Kazakov A, Hall R, Jagoda P et al. Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis. Cardiovasc. Res. doi:10.1093/cvr/cvt181 (2013) (Epub ahead of print).
  • Kanellakis P, Pomilio G, Agrotis A et al. Darbepoetin-mediated cardioprotection after myocardial infarction involves multiple mechanisms independent of erythropoietin receptor-common beta-chain heteroreceptor. Br. J. Pharmacol. 160(8), 2085–2096 (2010).
  • Sun Y, Carretero OA, Xu J et al. Deletion of inducible nitric oxide synthase provides cardioprotection in mice with 2-kidney, 1-clip hypertension. Hypertension 53(1), 49–56 (2009).
  • Wang Y, Wu Y, Chen J, Zhao S, Li H. Pirfenidone attenuates cardiac fibrosis in a mouse model of tac-induced left ventricular remodeling by suppressing nlrp3 inflammasome formation. Cardiology 126(1), 1–11 (2013).
  • Muller-Brunotte R, Kahan T, Lopez B et al. Myocardial fibrosis and diastolic dysfunction in patients with hypertension: Results from the swedish irbesartan left ventricular hypertrophy investigation versus atenolol (silvhia). J. Hypertens. 25(9), 1958–1966 (2007).
  • Laviades C, Varo N, Fernandez J et al. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98(6), 535–540 (1998).
  • Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83(6), 1849–1865 (1991).
  • Risteli J, Elomaa I, Niemi S, Novamo A, Risteli L. Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: A new serum marker of bone collagen degradation. Clin. Chem. 39(4), 635–640 (1993).
  • Segura AM, Frazier OH, Buja LM. Fibrosis and heart failure. Heart Fail. Rev. doi:10.1007/s10741-012-9365-4 (2012) (Epub ahead of print).
  • Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 51(16), 1581–1587 (2008).
  • Vermes E, Carbone I, Friedrich MG, Merchant N. Patterns of myocardial late enhancement: typical and atypical features. Arch. Cardiovasc. Dis. 105(5), 300–308 (2012).
  • Gahide G, Bertrand D, Roubille F et al. Mr delayed enhancement imaging findings in suspected acute myocarditis. Eur. Radiol. 20(1), 65–72 (2010).
  • Machado S, Roubille F, Gahide G et al. Can troponin elevation predict worse prognosis in patients with acute pericarditis? Ann. Cardiol. Angeiol. (Paris) 59(1), 1–7 (2010).
  • Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG. T1 mapping in patients with acute myocardial infarction. J. Cardiovasc. Magn. Reson. 5(2), 353–359 (2003).
  • Messroghli DR, Walters K, Plein S et al. Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magn. Reson. Med. 58(1), 34–40 (2007).
  • Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 57(8), 891–903 (2011).
  • Iles L, Pfluger H, Phrommintikul A et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52(19), 1574–1580 (2008).
  • Robbers LF, Baars EN, Brouwer WP et al. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ. Cardiovasc. Imaging 5(3), 423–426 (2012).
  • Jerosch-Herold M, Sheridan DC, Kushner JD et al. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 295(3), H1234–H1242 (2008).
  • Ugander M, Oki AJ, Hsu LY et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur. Heart J. 33(10), 1268–1278 (2012).
  • Wong TC, Piehler K, Meier CG et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126(10), 1206–1216 (2012).
  • Liu S, Han J, Nacif MS et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J. Cardiovasc. Magn. Reson. 14, 90 (2012).
  • Ferreira VM, Piechnik SK, Dall'Armellina E et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14, 42 (2012).
  • Kolipaka A, McGee KP, Araoz PA et al. Mr elastography as a method for the assessment of myocardial stiffness: Comparison with an established pressure-volume model in a left ventricular model of the heart. Magn. Reson. Med. 62(1), 135–140 (2009).
  • Robert B, Sinkus R, Gennisson JL, Fink M. Application of dense-mr-elastography to the human heart. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine Society of Magnetic Resonance in Medicine (2009) 62(5):1155–1163.
  • Sack I, Rump J, Elgeti T, Samani A, Braun J. Mr elastography of the human heart: Noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn. Reson. Med. 61(3), 668–677 (2009).
  • De Smet K, Verdries D, Tanaka K, De Mey J, De Maeseneer M. MRI in the assessment of non ischemic myocardial diseases. Eur. J. Radiol. 81(7), 1546–1548 (2012).
  • Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation 126(10), 1286–1300 (2012).
  • Friedrich MG, Sechtem U, Schulz-Menger J et al. Cardiovascular magnetic resonance in myocarditis: A JACC white paper. J. Am. Coll. Cardiol. 53(17), 1475–1487 (2009).
  • Schulz-Menger J, Wassmuth R, Abdel-Aty H et al. Patterns of myocardial inflammation and scarring in sarcoidosis as assessed by cardiovascular magnetic resonance. Heart 92(3), 399–400 (2006).
  • Won S, Davies-Venn C, Liu S, Bluemke DA. Noninvasive imaging of myocardial extracellular matrix for assessment of fibrosis. Curr. Opin. Cardiol. 28(3), 282–289 (2013).
  • Brilla CG. Regression of myocardial fibrosis in hypertensive heart disease: Diverse effects of various antihypertensive drugs. Cardiovasc. Res. 46(2), 324–331 (2000).
  • Lopez B, Querejeta R, Varo N et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104(3), 286–291 (2001).
  • Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ace2-ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J.Mol. Cell. Cardiol. 51(4), 542–547 (2011).
  • Gavras I, Gavras H. Angiotensin II as a cardiovascular risk factor. J. Hum. hypertens. 16(Suppl. 2), S2–6 (2002).
  • Iwata M, Cowling RT, Gurantz D et al. Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am. J. Physiol. Heart Circ. Physiol. 289(6), H2356–2363 (2005).
  • Duerrschmid C, Crawford JR, Reineke E et al. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J. Mol. Cell. Cardiol. 57, 59–67 (2013).
  • Nakagami F, Koriyama H, Nakagami H et al. Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice. PLoS ONE 8(3), e60493 (2013).
  • Brilla CG, Matsubara L, Weber KT. Advanced hypertensive heart disease in spontaneously hypertensive rats. Lisinopril-mediated regression of myocardial fibrosis. Hypertension 28(2), 269–275 (1996).
  • Schieffer B, Wirger A, Meybrunn M et al. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89(5), 2273–2282 (1994).
  • Matsusaka H, Kinugawa S, Ide T et al. Angiotensin II type 1 receptor blocker attenuates exacerbated left ventricular remodeling and failure in diabetes-associated myocardial infarction. J. Cardiovasc. Pharmacol. 48(3), 95–102 (2006).
  • Kawamura M, Ito H, Onuki T et al. Candesartan decreases type III procollagen-n-peptide levels and inflammatory marker levels and maintains sinus rhythm in patients with atrial fibrillation. J. Cardiovasc. Pharmacol. 55(5), 511–517 (2010).
  • Rabelo LA, Alenina N, Bader M. Ace2-angiotensin-(1-7)-mas axis and oxidative stress in cardiovascular disease. Hypertens. Res. 34(2), 154–160 (2011).
  • Keidar S, Kaplan M, Gamliel-Lazarovich A. Ace2 of the heart: From angiotensin i to angiotensin (1-7). Cardiovasc. Res. 73(3), 463–469 (2007).
  • Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in dahl salt-sensitive hypertensive rats. Am. J. Hypertens. 20(10), 1119–1124 (2007).
  • Trask AJ, Groban L, Westwood BM et al. Inhibition of angiotensin-converting enzyme 2 exacerbates cardiac hypertrophy and fibrosis in ren-2 hypertensive rats. Am. J. Hypertens. 23(6), 687–693 (2010).
  • Dong B, Yu QT, Dai HY et al. Angiotensin-converting enzyme-2 overexpression improves left ventricular remodeling and function in a rat model of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 59(8), 739–747 (2012).
  • Azibani F, Benard L, Schlossarek S et al. Aldosterone inhibits antifibrotic factors in mouse hypertensive heart. Hypertension 59(6), 1179–1187 (2012).
  • Azibani F, Devaux Y, Coutance G et al. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice. PloS ONE 7(5), e38197 (2012).
  • Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, O'Moore-Sullivan T, Marwick TH. A randomized study of the beneficial effects of aldosterone antagonism on lv function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc. Imaging 4(12), 1239–1249 (2011).
  • Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, Marwick TH. Fibrosis and cardiac function in obesity: A randomised controlled trial of aldosterone blockade. Heart 99(5), 320–326 (2013).
  • Mak GJ, Ledwidge MT, Watson CJ et al. Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone. J. Am. Coll. Cardiol. 54(18), 1674–1682 (2009).
  • Roubille F, Tardif JC. New therapeutic targets in cardiology: Heart failure and arrhythmia: HCN channels. Circulation 127(19), 1986–1996 (2013).
  • Busseuil D, Shi Y, Mecteau M et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 117(3), 234–242 (2010).
  • Becher PM, Lindner D, Miteva K et al. Role of heart rate reduction in the prevention of experimental heart failure: Comparison between If-channel blockade and beta-receptor blockade. Hypertension 59(5), 949–957 (2012).
  • Khoueiry Z, Roubille C, Nagot N et al. Could heart rate play a role in pericardial inflammation? Med. Hypotheses 79(4), 512–515 (2012).
  • Li YC, Luo Q, Ge LS et al. Ivabradine inhibits the production of proinflammatory cytokines and inducible nitric oxide synthase in acute coxsackievirus B3-induced myocarditis. Biochem. Biophys. Res. Commun. 431(3), 450–455 (2013).
  • Ieki K, Yazaki Y, Yamaoki K et al. Effect of long-term treatment with beta-blocker on cardiac hypertrophy in shr. J. Mol. Cell. Cardiol. 21(Suppl. 5), 113–119 (1989).
  • Liao Y, Asakura M, Takashima S et al. Celiprolol, a vasodilatory beta-blocker, inhibits pressure overload-induced cardiac hypertrophy and prevents the transition to heart failure via nitric oxide-dependent mechanisms in mice. Circulation 110(6), 692–699 (2004).
  • Bartholomeu JB, Vanzelli AS, Rolim NP et al. Intracellular mechanisms of specific beta-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure. J. Mol. Cell. Cardiol. 45(2), 240–249 (2008).
  • Novoyatleva T, Schymura Y, Janssen W et al. Deletion of fn14 receptor protects from right heart fibrosis and dysfunction. Basic Res. Cardiol. 108(2), 325 (2013).
  • Zhang W, Chancey AL, Tzeng HP et al. The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 124(19), 2106–2116 (2011).
  • Hamid T, Gu Y, Ortines RV et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappab and inflammatory activation. Circulation 119(10), 1386–1397 (2009).
  • Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117(6), 1538–1549 (2007).
  • Januzzi JLJr. ST2 as a cardiovascular risk biomarker: From the bench to the bedside. J. Cardiovasc. Transl. Res. 6(4), 493–500 (2013).
  • Honsho S, Nishikawa S, Amano K et al. Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ. Res. 105(11), 1149–1158 (2009).
  • Szardien S, Nef HM, Voss S et al. Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1beta synthesis. Eur. Heart J. 33(5), 595–605 (2012).
  • Bujak M, Dobaczewski M, Chatila K et al. Interleukin-1 receptor Type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 173(1), 57–67 (2008).
  • Obana M, Maeda M, Takeda K et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 121(5), 684–691 (2010).
  • Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56(2), 225–231 (2010).
  • de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr. Heart Fail. Rep. 7(1), 1–8 (2010).
  • Sharma UC, Pokharel S, van Brakel TJ et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110(19), 3121–3128 (2004).
  • Roubille F, Prunier F, Barrere-Lemaire S et al. What is the role of erythropoietin in acute myocardial infarct? Bridging the gap between experimental models and clinical trials. Cardiovasc. Drugs Ther. 27(4), 315–331 (2013).
  • Briest W, Homagk L, Baba HA et al. Cardiac remodeling in erythropoietin-transgenic mice. Cell. Physiol. Biochem. 14(4–6), 277–284 (2004).
  • Oie E, Bjornerheim R, Clausen OP, Attramadal H. Cyclosporin a inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2115–2123 (2000).
  • Yang G, Meguro T, Hong C et al. Cyclosporine reduces left ventricular mass with chronic aortic banding in mice, which could be due to apoptosis and fibrosis. J. Mol. Cell. Cardiol. 33(8), 1505–1514 (2001).
  • Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation 105(6), 677–679 (2002).
  • Shahbaz AU, Kamalov G, Zhao W et al. Mitochondria-targeted cardioprotection in aldosteronism. J. Cardiovasc. Pharmacol. 57(1), 37–43 (2011).
  • Dai DF, Chen T, Szeto H et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J. Am. Coll. Cardiol. 58(1), 73–82 (2011).
  • Wang ZF, Wang NP, Harmouche S et al. Postconditioning promotes the cardiac repair through balancing collagen degradation and synthesis after myocardial infarction in rats. Basic Res. Cardiol. 108(1), 318 (2013).
  • Nagayama T, Hsu S, Zhang M et al. Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J. Am. Coll. Cardiol. 53(2), 207–215 (2009).
  • Westermann D, Becher PM, Lindner D et al. Selective PDE5A II inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin ii-induced heart failure in vivo. Basic Res. Cardiol. 107(6), 308 (2012).
  • Wang JS, Kovanecz I, Vernet D et al. Effects of sildenafil and/or muscle derived stem cells on myocardial infarction. J. Transl. Med. 10, 159 (2012).
  • Kim KH, Kim YJ, Ohn JH et al. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: Benefits of ventricular remodeling and exercise capacity. Circulation 125(11), 1390–1401 (2012).
  • Schwartz BG, Levine LA, Comstock G, Stecher VJ, Kloner RA. Cardiac uses of phosphodiesterase-5 inhibitors. J. Am. Coll. Cardiol. 59(1), 9–15 (2012).
  • Giannetta E, Isidori AM, Galea N et al. Chronic inhibition of CGMP phosphodiesterase 5a improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125(19), 2323–2333 (2012).
  • Ogata T, Miyauchi T, Sakai S, Takanashi M, Irukayama-Tomobe Y, Yamaguchi I. Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-b pathway. J. Am. Coll. Cardiol. 43(8), 1481–1488 (2004).
  • Elnakish MT, Kuppusamy P, Khan M. Stem cell transplantation as a therapy for cardiac fibrosis. J. Pathol. 229(2), 347–354 (2013).
  • Uchinaka A, Kawaguchi N, Hamada Y et al. Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovasc. Res. 99(1), 102–110 (2013).
  • Thum T, Lorenzen JM. Cardiac fibrosis revisited by microrna therapeutics. Circulation 126(7), 800–802 (2012).
  • Bauersachs J. Regulation of myocardial fibrosis by micrornas. J. Cardiovasc. Pharmacol. 56(5), 454–459 (2010).
  • Pan Z, Sun X, Shan H et al. Microrna-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the fbj osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126(7), 840–850 (2012).
  • Aurora AB, Mahmoud AI, Luo X et al. Microrna-214 protects the mouse heart from ischemic injury by controlling ca(2)(+) overload and cell death. J. Clin. Invest. 122(4), 1222–1232 (2012).
  • Topkara VK, Mann DL. Role of micrornas in cardiac remodeling and heart failure. Cardiovasc. Drugs Ther. 25(2), 171–182 (2011).
  • Bauersachs J. Mir-21: a central regulator of fibrosis not only in the broken heart. Cardiovasc. Res. 96(2), 227–229, discussion 230–223 (2012).
  • Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, Thum T. Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microrna-21. Arterioscler. Thromb. Vasc. Biol. 32(2), 361–369 (2012).
  • van Rooij E, Marshall WS, Olson EN. Toward microrna-based therapeutics for heart disease: The sense in antisense. Circ. Res. 103(9), 919–928 (2008).
  • van Rooij E, Olson EN: Searching for mir-acles in cardiac fibrosis. Circ. Res. 104(2), 138–140 (2009).
  • Thum T, Gross C, Fiedler J et al. Microrna-21 contributes to myocardial disease by stimulating map kinase signalling in fibroblasts. Nature 456(7224), 980–984 (2008).
  • van Rooij E, Sutherland LB, Thatcher JE et al. Dysregulation of micrornas after myocardial infarction reveals a role of mir-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105(35), 13027–13032 (2008).
  • Bernardo BC, Gao XM, Winbanks CE et al. Therapeutic inhibition of the mir-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA 109(43), 17615–17620 (2012).
  • Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10(5), 927–939 (2005).
  • Bujak M, Frangogiannis NG. The role of tgf-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74(2), 184–195 (2007).
  • Gieling RG, Burt AD, Mann DA. Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin. Liver Dis. 12(4), 915–937, xi (2008).
  • Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent smad pathways: the role of smad3. Hypertension 54(4), 877–884 (2009).
  • Flanders KC. Smad3 as a mediator of the fibrotic response. Int. J. Exp. Pathol. 85(2), 47–64 (2004).
  • Xavier S, Piek E, Fujii M et al. Amelioration of radiation-induced fibrosis: Inhibition of transforming growth factor-beta signaling by halofuginone. J. Biol. Chem. 279(15), 15167–15176 (2004).
  • Wang S, Wilkes MC, Leof EB, Hirschberg R. Imatinib mesylate blocks a non-smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J. 19(1), 1–11 (2005).
  • Daniels CE, Wilkes MC, Edens M et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114(9), 1308–1316 (2004).
  • Araujo-Jorge TC, Waghabi MC, Bailly S, Feige JJ. The TGF-beta pathway as an emerging target for chagas disease therapy. Clin. Pharmacol. Ther. 92(5), 613–621 (2012).
  • Jiang B, Li D, Deng Y et al. Salvianolic acid a, a novel matrix metalloproteinase-9 inhibitor, prevents cardiac remodeling in spontaneously hypertensive rats. PLoS ONE 8(3), e59621 (2013).
  • Chiao YA, Ramirez TA, Zamilpa R et al. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc. Res. 96(3), 444–455 (2012).
  • Georgescu SP, Aronovitz MJ, Iovanna JL, Patten RD, Kyriakis JM, Goruppi S: Decreased metalloprotease 9 induction, cardiac fibrosis, and higher autophagy after pressure overload in mice lacking the transcriptional regulator p8. Am. J. Physiol. Cell Physiol. 301(5), C1046–C1056 (2011).
  • Oyamada S, Bianchi C, Takai S, Chu LM, Sellke FW. Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J. Pharmacol. Exp. Ther. 339(1), 143–151 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.