166
Views
33
CrossRef citations to date
0
Altmetric
Perspective

Recent advances in cardiovascular regenerative medicine: the induced pluripotent stem cell era

&
Pages 803-810 | Published online: 10 Jan 2014

References

  • Yuasa S, Itabashi Y, Koshimizu U et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotech.23(5), 607–611 (2005).
  • Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes. Circ. Res.98(8), 1002–1013 (2006).
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature292(5819), 154–156 (1981).
  • Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science309(5739), 1369–1373 (2005).
  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature385(6619), 810–813 (1997).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858), 1917–1920 (2007).
  • Park I-H, Zhao R, West JA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175), 141–146 (2008).
  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature448(7151), 313–317 (2007).
  • Nak,agawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotech.26(1), 101–106 (2008).
  • Lowry WE, Richter L, Yachechko R et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci.105(8), 2883–2888 (2008).
  • Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1(1), 55–70 (2007).
  • Hanna J, Markoulaki S, Schorderet P et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133(2), 250–264 (2008).
  • Schenke-Layland K, Rhodes KE, Angelis E et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells2008–0033 (2008).
  • Hanna J, Wernig M, Markoulaki S et al. Treatment of sickle cell anemia mouse model with IPS cells generated from autologous skin. Science318(5858), 1920–1923 (2007).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282(5391), 1145–1147 (1998).
  • Wakayama T, Hayashi Y, Ogura A. Participation of the female pronucleus derived from the second polar body in full embryonic development of mice. J. Reprod. Fertil.110(2), 263–266 (1997).
  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol.87, 27–45 (1985).
  • Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest.98(1), 216–224 (1996).
  • Hattan N, Kawaguchi H, Ando K et al. Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc. Res.65(2), 334–344 (2005).
  • Dyson E, Sucov HM, Kubalak SW et al. Atrial-Like Phenotype is Associated with Embryonic Ventricular Failure in Retinoid X Receptor {α} -/- Mice. Proc. Natl Acad. Sci.92(16), 7386–7390 (1995).
  • Kastner P, Grondona JM, Mark M et al. Genetic analysis of RXRα developmental function: Convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell78(6), 987–1003 (1994).
  • Osmond MK, Butler AJ, Voon FC, Bellairs R. The effects of retinoic acid on heart formation in the early chick embryo. Development113(4), 1405–1417 (1991).
  • Edwards MK, Harris JF, McBurney MW. Induced muscle differentiation in an embryonal carcinoma cell line. Mol. Cell. Biol.3(12), 2280–2286 (1983).
  • Wobus AM, Kaomei G, Shan J et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol.29(6), 1525–1539 (1997).
  • Kanno S, Kim PKM, Sallam K, Lei J, Billiar TR, Shears LL 2nd. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl Acad. Sci.101(33), 12277–12281 (2004).
  • Takahashi T, Lord B, Schulze PC et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation107(14), 1912–1916 (2003).
  • Boheler KR, Czyz J, Tweedie D, Yang H-T, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res.91(3), 189–201 (2002).
  • Sachinidis A, Fleischmann BK, Kolossov E, Wartenberg M, Sauer H, Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc. Res.58(2), 278–291 (2003).
  • Heng BC, Haider HK, Sim EK-W, Cao T, Ng SC. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc. Res.62(1), 34–42 (2004).
  • Winnier G, Blessing M, Labosky PA, Hogan BL. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev.9(17), 2105–2116 (1995).
  • Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development122(10), 2977–2986 (1996).
  • Schlange T, Andree B, Arnold H-H, Brand T. BMP2 is required for early heart development during a distinct time period. Mech. Dev.91(1–2), 259–270 (2000).
  • Gaussin V, Van de Putte T, Mishina Y et al. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc. Natl Acad. Sci.99(5), 2878–2883 (2002).
  • Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev.15(3), 316–327 (2001).
  • Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev.15(3), 304–315 (2001).
  • Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev.19(3), 387–396 (2005).
  • Timmerman LA, Grego-Bessa J, Raya A et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev.18(1), 99–115 (2004).
  • Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the notch pathway. Ann. Rev. Immunol.23(1), 945–974 (2005).
  • Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc. Natl Acad. Sci.92(2), 467–471 (1995).
  • von Bubnoff A, Cho KWY. Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev. Biol.239(1), 1–14 (2001).
  • Schneider MD, Gaussin V, Lyons KM. Tempting fate: BMP signals for cardiac morphogenesis. Cytokine Growth Factor Rev.14(1), 1–4 (2003).
  • Hogan BLM. Bone morphogenetic proteins in development. Curr. Opin. Gene. Dev.6(4), 432–438 (1996).
  • Ray RP, Wharton KA. Twisted perspective: new insights into extracellular modulation of bmp signaling during development. Cell104(6), 801–804 (2001).
  • Lyons KM, Pelton RW, Hogan BL. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development109(4), 833–844 (1990).
  • Lyons KM, Hogan BLM, Robertson EJ. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev.50(1), 71–83 (1995).
  • Andrew T. Dudley EJR. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn.208(3), 349–362 (1997).
  • Neuhaus H, Rosen V, Thies RS. Heart specific expression of mouse BMP-10 a novel member of the TGF-β superfamily. Mech. Dev.80(2), 181–184 (1999).
  • Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev.11(4), 451–462 (1997).
  • Monzen K, Hiroi Y, Kudoh S et al. Smads, TAK1, and their common target atf-2 play a critical role in cardiomyocyte differentiation. J. Cell Biol.153(4), 687–698 (2001).
  • Monzen K, Shiojima I, Hiroi Y et al. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol. Cell. Biol.19(10), 7096–7105 (1999).
  • Ladd AN, Yatskievych TA, Antin PB. Regulation of avian cardiac myogenesis by activin/TGFβ and bone morphogenetic proteins. Dev. Biol.204(2), 407–419 (1998).
  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature376(6538), 333–336 (1995).
  • Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron28(3), 713–726 (2000).
  • Faure S, de Santa Barbara P, Roberts DJ, Whitman M. Endogenous patterns of BMP signaling during early chick development. Dev. Biol.244(1), 44–65 (2002).
  • Fletcher RB, Watson AL, Harland RM. Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns5(2), 225–230 (2004).
  • Zhang P, Li J, Tan Z et al. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood111(4), 1933–1941 (2008).
  • Kumar D, Sun B. Transforming growth factor-β2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem. Biophys. Res. Commun.332(1), 135–141 (2005).
  • Behfar A, Zingman LV, Hodgson DM et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J.16(12), 1558–1566 (2002).
  • Laflamme MA, Chen KY, Naumova AV et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotech.25(9), 1015–1024 (2007).
  • Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature434(7035), 843–850 (2005).
  • Charron F, Tessier-Lavigne M. Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development132(10), 2251–2262 (2005).
  • Bejsovec A. Wnt pathway activation: new relations and locations. Cell120(1), 11–14 (2005).
  • Widelitz R. Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors23(2), 111–116 (2005).
  • Chapman SC, Brown R, Lees L, Schoenwolf GC, Lumsden A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev. Dyn.229(3), 668–676 (2004).
  • Eisenberg CA, Gourdie RG, Eisenberg LM. Wnt-11 is expressed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE-6. Development124(2), 525–536 (1997).
  • Carol A. Eisenberg LME. WNT11 promotes cardiac tissue formation of early mesoderm. Dev. Dyn.216(1), 45–58 (1999).
  • Pandur P, Lasche M, Eisenberg LM, Kuhl M. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature418(6898), 636–641 (2002).
  • Terami H, Hidaka K, Katsumata T, Iio A, Morisaki T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem. Biophys. Res. Commun.325(3), 968–975 (2004).
  • Nakamura T, Sano M, Songyang Z, Schneider MD. A Wnt- and β -catenin-dependent pathway for mammalian cardiac myogenesis. Proc. Natl Acad. Sci.100(10), 5834–5839 (2003).
  • Deb A, Davis BH, Guo J et al. SFRP2 regulates cardiomyogenic differentiation by inhibiting a positive transcriptional autofeedback loop of Wnt3a. Stem Cells26(1), 35–44 (2008).
  • Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc. Natl Acad. Sci.104(26), 10894–10899 (2007).
  • Ai D, Fu X, Wang J et al. Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc. Natl Acad. Sci.104(22), 9319–9324 (2007).
  • Liu Y, Asakura M, Inoue H et al. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc. Natl Acad. Sci.104(10), 3859–3864 (2007).
  • Naito AT, Shiojima I, Akazawa H et al. Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl Acad. Sci.103(52), 19812–19817 (2006).
  • Ueno S, Weidinger G, Osugi T et al. From the cover: biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl Acad. Sci.104(23), 9685–9690 (2007).
  • Singh AM, Li F-Q, Hamazaki T, Kasahara H, Takemaru K-I, Terada N. Chibby, an antagonist of the Wnt/β-catenin pathway, facilitates cardiomyocyte differentiation of murine embryonic stem cells. Circulation115(5), 617–626 (2007).
  • Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science284(5415), 770–776 (1999).
  • Lutolf S, Radtke F, Aguet M, Suter U, Taylor V. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development129(2), 373–385 (2002).
  • Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci.8(6), 709–715 (2005).
  • Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer3(10), 756–767 (2003).
  • Schroeder T, Fraser ST, Ogawa M et al. Recombination signal sequence-binding protein Jκ alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc. Natl Acad. Sci.100(7), 4018–4023 (2003).
  • Nemir M, Croquelois A, Pedrazzini T, Radtke F. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ. Res.98(12), 1471–1478 (2006).
  • Garg V, Muth AN, Ransom JF et al. Mutations in NOTCH1 cause aortic valve disease. Nature437(7056), 270–274 (2005).
  • Grego-Bessa J, Luna-Zurita L, del Monte G et al. Notch signaling is essential for ventricular chamber development. Developmental Cell12(3), 415–429 (2007).
  • Kwon C, Han Z, Olson EN, Srivastava D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc. Natl Acad. Sci.102(52), 18986–18991 (2005).
  • Bussell K. The dynamics of the cycle. Nat. Rev. Mol. Cell. Biol.6(3), 190–190 (2005).
  • Lum L, Beachy PA. The hedgehog response network: sensors, switches, and routers. Science304(5678), 1755–1759 (2004).
  • Kehat I, Kenyagin-Karsenti D, Snir M et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest.108(3), 407–414 (2001).
  • Kehat I, Khimovich L, Caspi O et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol.22(10), 1282–1289 (2004).
  • Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1210–1221 (2006).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367(9505), 113–121 (2006).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary Injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med.355(12), 1199–1209 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.