155
Views
33
CrossRef citations to date
0
Altmetric
Review

Role of postprandial hyperglycemia in cardiovascular disease

Pages 859-872 | Published online: 10 Jan 2014

References

  • Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care21(7), 1138–1145 (1998).
  • Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care16(2), 434–444 (1993).
  • Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med.339(4), 229–234 (1998).
  • Teff KL, Elliott SS, Matthias Tschöp M et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J. Clin. Endocrinol. Metabol.89, 2963–2972 (2004).
  • Zhu W, Zhong C, Yu Y, Li K. Acute effects of hyperglycaemia with and without exercise on endothelial function in healthy young men. Eur. J. Appl. Physiol.99(6), 585–591 (2007).
  • MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic β-cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci.360(1464), 2211–2225 (2005).
  • Hansotia T, Drucker DJ. GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. Regul. Pept.128(2), 125–134 (2005).
  • Gautier JF, Fetita S, Sobngwi E, Salaün-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with Type 2 diabetes. Diabetes Metab.31(3 Pt 1), 233–242 (2005).
  • Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett.358, 219–224 (1995).
  • Bullock BP, Heller RS, and Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology137, 2968–2971 (1996).
  • Nikolaidis LA, Mankad S, Sokos GG et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation109, 962–965 (2004).
  • Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J. Card. Fail.12(9), 694–699 (2006).
  • Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia–reperfusion injury in rat heart. Regul. Pept.7, 146(1–3), 243–249 (2008).
  • Bose AK, Mocanu MM, Carr RD, Yellon DM. Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway. Cardiovasc. Drugs Ther.21(4), 253–256 (2007).
  • Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes54(1), 146–151 (2005).
  • Nyström T, Gutniak MK, Zhang Q et al. Effects of glucagon-like peptide-1 on endothelial function in Type 2 diabetes patients with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab.287(6), E1209–E1215 (2004).
  • Yu M, Moreno C, Hoagland KM et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J. Hypertens.21, 1125–1135 (2003).
  • Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am. J. Physiol. Endocrinol. Metab.293(5), E1289–E1295 (2007).
  • Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology133, 2861–2870 (1993).
  • Nitz I, Fisher E, Weikert C, Burwinkel B et al. Association analyses of GIP and GIPR polymorphisms with traits of the metabolic syndrome. Mol. Nutr. Food Res.51(8), 1046–1052 (2007).
  • Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos. Trans. R. Soc. Lond. B. Biol. Sci.361(1471), 1219–1235 (2006).
  • Gedulin BR, Jodka CM, Herrmann K, Young AA. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul. Pept.137(3), 121–127 (2006).
  • Young A. Inhibition of glucagon secretion. Adv. Pharmacol.52, 151–171 (2005).
  • Gredal C, Rosenfalck AM, Dejgaard A, Hilsted J. Impaired first-phase insulin response predicts postprandial blood glucose increment in patients with recently diagnosed Type 2 diabetes. Scand. J. Clin. Lab. Invest.67(3), 327–336 (2007).
  • Polonsky KS, Sturis J, Van Cauter E. Temporal profiles and clinical significance of pulsatile insulin secretion. Horm. Res.49(3–4), 178–184 (1998).
  • Alssema M, Schindhelm RK, Rijkelijkhuizen JM et al. Meal composition affects insulin secretion in women with Type 2 diabetes: a comparison with healthy controls. The Hoorn prandial study. Eur. J. Clin. Nutr. (2007) (Epub ahead of print).
  • Bock G, Dalla Man C, Campioni M et al. Pathogenesis of pre-diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes.55(12), 3536–3549 (2006).
  • Toft-Nielsen MB, Damholt MB, Madsbad S et al. Determinants of the impaired secretion of glucagon-like peptide-1 in Type 2 diabetic patients. J. Clin Endocrinol. Metab.86, 3717–3723 (2001).
  • Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in Type 2 diabetic patients. Diabetes50(3), 609–613 (2001).
  • Nauck MA, Baller B, Meier JJ. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of Type 2 diabetes. Diabetes53(Suppl. 3), S190–S196 (2004).
  • Vilsbøll T, Holst JJ. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia47(3), 357–366 (2004).
  • Vilsbøll T, Krarup T, Madsbad S, Holst JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia45(8), 1111–1119 (2002).
  • Vilsbøll T, Knop FK, Krarup T et al. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J. Clin. Endocrinol. Metab.88(10), 4897–4903 (2003).
  • Laakso M, Zilinskaite J, Hansen T et al.; for the EUGENE2 Consortium. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study. Diabetologia51(3), 502–511. (2008).
  • Rolla A. The pathophysiological basis for intensive insulin replacement. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 2), S3–S7 (2004).
  • Kashyap S, Belfort R, Gastaldelli A et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop Type 2 diabetes. Diabetes52(10), 2461–2474 (2003).
  • Henkel E, Menschikowski M, Koehler C, Leonhardt W, Hanefeld M. Impact of glucagon response on postprandial hyperglycemia in men with impaired glucose tolerance and Type 2 diabetes mellitus. Metabolism.54(9), 1168–1173 (2005).
  • Del Prato S, Marchetti P. β- and α-cell dysfunction in Type 2 diabetes. Horm. Metab. Res.36(11–12), 775–781 (2004).
  • Hamaguchi T, Fukushima H, Uehara M et al. Abnormal glucagon response to arginine and its normalization in obese hyperinsulinaemic patients with glucose intolerance: importance of insulin action on pancreatic α cells. Diabetologia34(11), 801–806 (1991).
  • Meier JJ, Kjems LL, Veldhuis JD, Lefèbvre P, Butler PC. Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes55(4), 1051–1056 (2006).
  • Basu A, Alzaid A, Dinneen S, Caumo A, Cobeli C, Rizza RA. Effects of a change in the pattern of insulin delivery on carbohydrate tolerance in diabetic and nondiabetic humans in the presence of differing degrees of insulin resistance. J. Clin. Invest.97, 2351–2361 (1996).
  • Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in Type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.287(6), E1049–1056 (2004).
  • Mitrakou A, Kelley D, Veneman T et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes39, 1381–1390 (1990).
  • Meyer C, Dostou J, Welle S, and Gerich J. Role of human liver, kidney and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab.282, E419–E427 (2002).
  • Woerle HJ, Szoke E, Meyer C et al. Mechanisms for abnormal postprandial glucose metabolism in Type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.290(1), E67–E77 (2006).
  • Maia FF, Araújo LR. Efficacy of continuous glucose monitoring system (CGMS) to detect postprandial hyperglycemia and unrecognized hypoglycemia in Type 1 diabetic patients. Diabetes Res. Clin. Pract.75(1), 30–34 (2007).
  • Sachedina N, Pickup JC. Performance assessment of the Medtronic-MiniMed Continuous Glucose Monitoring System and its use for measurement of glycaemic control in Type 1 diabetic subjects. Diabet. Med.20(12), 1012–1015 (2003).
  • Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of Type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care26(3), 881–885 (2003).
  • Diabetes Control And Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl. J. Med.329, 977–986 (1993).
  • Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macrovascular and microvascular complications of Type 2 diabetes (UKPDS 35): prospective observational study. Br. Med. J.321(7258), 405–412 (2000).
  • Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch. Physiol. Biochem.113(4), 259–267 (2007).
  • Colette C, Monnier L. Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with Type 2 diabetes. Horm. Metab. Res.39(9), 683–686 (2007).
  • Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in Type 2 diabetic patients: a randomized crossover study. J. Clin. Endocrinol. Metab.91(3), 837–842 (2006).
  • Zhu W, Zhong C, Yu Y, Li K. Acute effects of hyperglycaemia with and without exercise on endothelial function in healthy young men. Eur. J. Appl. Physiol.99(6), 585–591 (2007).
  • Lee IK, Kim HS, Bae JH. Endothelial dysfunction: its relationship with acute hyperglycaemia and hyperlipidemia. Int. J. Clin. Pract. (Suppl.) 129, 59–64 (2002).
  • van Oostrom AJ, Sijmonsma TP, Verseyden C et al. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J. Lipid. Res.44(3), 576–583 (2003).
  • Rudofsky G Jr, Reismann P, Schiekofer S et al. Reduction of postprandial hyperglycemia in patients with Type 2 diabetes reduces NF-κaB activation in PBMCs. Horm. Metab. Res.36(9), 630–638 (2004).
  • Wautier JL, Boulanger E, Wautier MP. Postprandial hyperglycemia alters inflammatory and hemostatic parameters. Diabetes Metab.32(Spec. No. 2), S234–S236 (2006).
  • Ceriello A, Taboga C, Tonutti L et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation106(10), 1211–1218 (2002).
  • Ceriello A, Quagliaro L, Piconi L et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes53(3), 701–710 (2004).
  • Yano M, Hasegawa G, Ishii M et al. Short-term exposure of high glucose concentration induces generation of reactive oxygen species in endothelial cells: implication for the oxidative stress associated with postprandial hyperglycemia. Redox Rep.9(2), 111–116 (2004).
  • Monnier L, Mas E, Ginet C et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with Type 2 diabetes. J. Am. Med. Assoc.295(14), 1681–1687 (2006).
  • de Castro SH, Castro-Faria-Neto HC, Gomes MB. Association of postprandial hyperglycemia with in vitro LDL oxidation in non-smoking patients with Type 1 diabetes – a cross-sectional study. Rev. Diabet. Stud. 2005, 2(3), 157–164 (2005).
  • Sakamoto T, Ogawa H, Kawano H et al. Rapid change of platelet aggregability in acute hyperglycemia: detection by a novel laser-light scattering method. Thromb. Haemost.83, 475–479, (2000).
  • Ceriello A, Quagliaro L, Catone B et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care25, 1439–1443 (2002).
  • Ceriello A. Nitrotyrosine: new findings as a marker of postprandial oxidative stress. Int. J. Clin. Pract. Suppl.129, 51–58 (2002).
  • Mihm MJ, Jing L, Bauer JA. Nitrotyrosine causes selective vascular endothelial dysfunction and DNA damage. J. Cardiovasc. Pharmacol36, 182–187 (2000).
  • Ceriello A, Quagliaro L, D’Amico M et al. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes51, 1076–1082 (2002).
  • Anderson RA, Evans LM, Ellis GR et al. Prolonged deterioration of endothelial dysfunction in response to postprandial lipaemia is attenuated by vitamin C in Type 2 diabetes. Diabet. Med.23(3), 258–264 (2006).
  • Schindhelm RK, Alssema M, Scheffer PG et al. Fasting and postprandial glycoxidative and lipoxidative stress are increased in women with Type 2 diabetes. Diabetes Care.30(7), 1789–1794 (2007).
  • Ting HJ, Stice JP, Schaff UY et al. Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-α. Circ. Res.100(3), 381–390 (2007).
  • Hyson DA, Paglieroni TG, Wun T, Rutledge JC. Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clin. Appl. Thromb. Hemost.8(2), 147–155 (2002).
  • Lundman P, Boquist S, Samnegård A et al. A high-fat meal is accompanied by increased plasma interleukin-6 concentrations. Nutr. Metab. Cardiovasc. Dis.17(3), 195–202 (2007).
  • Elmas E, Kälsch T, Suvajac N et al. Activation of coagulation during alimentary lipemia under real-life conditions. Int. J. Cardiol.114(2), 172–175 (2007).
  • Eberly LE, Stamler J, Neaton JD; Multiple Risk Factor Intervention Trial Research Group. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch. Intern. Med.163(9), 1077–1083 (2003).
  • Mittermayer F, Schaller G, Pleiner J et al. Rosiglitazone prevents free fatty acid-induced vascular endothelial dysfunction. J. Clin. Endocrinol. Metab.92(7), 2574–2580 (2007).
  • Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes49(7), 1231–1238 (2000).
  • de Jongh RT, Serné EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes53, 2873–2882 (2004).
  • Mitrakou A, Kelley D, Mokan M et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N. Engl. J. Med.326(1), 22–29 (1992).
  • Eschwege E, Richard JL, Thibult N et al. Coronary heart disease mortality in relation with diabetes, blood glucose and plasma insulin levels. The Paris Prospective Study, ten years later. Horm. Metab. Res. (Suppl. 15), 41–46 (1985).
  • Ardigo D, Franzini L, Valtuena S, Monti LD, Reaven GM, Zavaroni I. Relation of plasma insulin levels to forearm flow-mediated dilatation in healthy volunteers. Am. J. Cardiol.97(8), 1250–1254 (2006).
  • Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent: a novel action of insulin to increase nitric oxide release. J. Clin. Invest.94, 1172–1179 (1994).
  • Utriainen T, Malmström R, Mäkimattila S, Yki-Järvinen H. Methodological aspects, dose–response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects. Diabetologia38, 555–564 (1995).
  • Baron AD, Brechtel G. Insulin differentially regulates systemic and skeletal muscle vascular resistance. Am. J. Physiol.265, E61–E67 (1993).
  • Vincent MA, Dawson D et al. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes51, 42–48 (2002)
  • Coggins M, Lindner J, Rattigan S et al. Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes50, 2682–2690 (2001).
  • Eringa EC, Stehouwer CD, van Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P. Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am. J. Physiol. Heart. Circ. Physiol.287(5), H2043–H2048 (2004).
  • Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc. Res.56(3), 464–471 (2002).
  • Laakso M, Edelman SV, Brechtel G, Baron AD. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes41, 1076–1083 (1992).
  • Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J. Clin. Invest.85, 1844–1852 (1990).
  • Du XL, Edelstein D, Dimmeler S et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Invest.108, 1341–1348 (2001).
  • Spitaler MM, Graier WF. Vascular targets of redox signaling in diabetes mellitus. Diabetologia45, 476–494 (2002).
  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol.271, C1424–C1437 (1996).
  • Farkas K, Jermendy G, Herold M, Ruzicska E, Sasvári M, Somogyi A. Impairment of the NO/cGMP pathway in the fasting and postprandial state in Type 1 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes.112(5), 258–263 (2004).
  • Hu RM, Levin ER, Pedram A, Frank HJ. Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes42, 351–358 (1993).
  • Ferri C, Pittoni V, Piccoli A et al. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J. Clin. Endocrinol. Metab.80, 829–835 (1995).
  • Anfossi G, Cavalot F, Massucco P et al. Insulin influences immunoreactive endothelin release by human vascular smooth muscle cells. Metabolism42, 1081–1083 (1993).
  • Frank HJ, Levin ER, Hu RM, Pedram A. Insulin stimulates endothelin binding and action on cultured vascular smooth muscle cells. Endocrinology133, 1092–1097 (1993).
  • Hopfner RL, Hasnadka RV, Wilson TW, McNeill JR, Gopalakrishnan V. Insulin increases endothelin-1-evoked intracellular free calcium responses by increased ET(A) receptor expression in rat aortic smooth muscle cells. Diabetes47, 937–944 (1998).
  • Luscher TF, Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation102, 2434–2440 (2000).
  • Marsen TA, Egink G, Suckau G, Baldamus CA. Tyrosine-kinase-dependent regulation of the nitric oxide synthase gene by endothelin-1 in human endothelial cells. Pflügers Arch.438, 538–544 (1999).
  • Cardoso CG Jr, Sakai D, Pinto LG et al. Neurovascular and hemodynamic responses to hyperinsulinemia in healthy postmenopausal women. Maturitas58(1), 50–58 (2007).
  • Zimlichman R, Zaidel L, Nofech-Mozes S et al. Hyperinsulinemia induces myocardial infarctions and arteriolar medial hypertrophy in spontaneously hypertensive rats. Am. J. Hypertens.10(6), 646–653 (1997).
  • Zimlichman R, Zeidel L, Gefel D et al. Insulin induces medial hypertrophy of myocardial arterioles in rats. Am. J. Hypertens.8(9), 915–920 (1995).
  • Ohya Y, Abe I, Fujii K et al. Hyperinsulinemia and left ventricular geometry in a work-site population in Japan. Hypertension.27(3 Pt 2), 729–734 (1996).
  • Horiuchi M, Mogi M, Iwai M. Signaling crosstalk angiotensin II receptor subtypes and insulin. Endocr. J.53(1), 1–5 (2006).
  • Wilmink HW, Banga JD, Hijmering M, Erkelens WD, Stroes ES, Rabelink TJ. Effect of angiotensin-converting enzyme inhibition and angiotensin II Type 1 receptor antagonism on postprandial endothelial function. J. Am. Coll. Cardiol.34(1), 140–145 (1999).
  • Saydah SH, Loria CM, Eberhardt MS, Brancati FL. Subclinical states of glucose intolerance and risk of death in the U.S. Diabetes Care24(3), 447– 453 (2001).
  • Temelkova-Kurktschiev TS, Koehler C, Schaper F, Leonhardt W, Henkel H, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose and HbA1c level. Diabetes Care23, 1830–1834 (2000).
  • Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care.22(6), 920–924 (1999).
  • Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, Temelkova-Kurktschiev T. Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis144, 229–235 (1999).
  • Alssema M, Schindhelm RK, Dekker JM et al. Postprandial glucose and not triglyceride concentrations are associated with carotid intima media thickness in women with normal glucose metabolism: the Hoorn prandial study. Atherosclerosis.196(2), 712–719 (2008).
  • Balkau B, Shipley M, Jarrett RJ et al. High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men: 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care21, 360–367 (1998).
  • Donahue RP, Abbott RD, Reed DM, Yano K. Postchallenge glucose concentration and coronary heart disease in men of Japanese ancestry: Honolulu Heart Program. Diabetes36, 689–692 (1987).
  • Lowe LP, Liu K, Greenland P, Metzger BE, Dyer AR, Stamler J. Diabetes, asymptomatic hyperglycemia, and 22-year mortality in black and white men: the Chicago Heart Association Detection Project in Industry study. Diabetes Care.20, 163–169 (1997).
  • Orencia AJ, Daviglus ML, Dyer AR, Walsh M, Greenland P, Stamler J. One-hour postload plasma glucose and risks of fatal coronary heart disease and stroke among nondiabetic men and women: the Chicago Heart Association Detection Project in Industry (CHA) Study. J. Clin. Epidemiol.50(12), 1369–1376 (1997).
  • The DECODE Study Group, the European Diabetes Epidemiology Group: Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Lancet354, 617–621 (1999).
  • de Vegt F, Dekker JM, Ruhè HG, Stehouwer CDA, Nijpels GBLM, Heine RJ. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia42, 926–931 (1999).
  • Hanefeld M, Fischer S, Julius U et al. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia39, 1577–1583 (1996).
  • Petrelli A, Traversa M, Bonomo K et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in Type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J. Clin. Endocrinol. Metab.91(3), 813–819 (2006).
  • Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events: a metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care22, 233–240 (1999).
  • Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? a Meta-analysis of Prospective Studies. Arch. Intern. Med.164(19), 2147–2155 (2004).
  • Wei M, Gibbons LW, Mitchell TL, Kampert JB, Stern MP, Blair SN. Low fasting plasma glucose level as a predictor of cardiovascular disease and all-cause mortality. Circulation101(17), 2047–2052 (2000).
  • Esposito K, Nappo F, Giugliano F, Giugliano G, Marfella R, Giugliano D. Effect of dietary antioxidants on postprandial endothelial dysfunction induced by a high-fat meal in healthy subjects. Am. J. Clin. Nutr.77(1), 139–143 (2003).
  • Esposito K, Nappo F, Giugliano F et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with Type 2 diabetes mellitus. Am. J. Clin. Nutr.78(6), 1135–1140 (2003).
  • Padilla J, Harris RA, Fly AD, Rink LD, Wallace JP. The effect of acute exercise on endothelial function following a high-fat meal. Eur. J. Appl. Physiol.98(3), 256–262 (2006).
  • Clegg M, McClean C, Davison GW et al. Exercise and postprandial lipaemia: effects on peripheral vascular function, oxidative stress and gastrointestinal transit. Lipids Health Dis.6(1), 30 (2007).
  • Derosa G, Mugellini A, Ciccarelli L, Crescenzi G, Fogari R. Comparison of glycaemic control and cardiovascular risk profile in patients with Type 2 diabetes during treatment with either repaglinide or metformin. Diabetes. Res. Clin. Pract.60(3), 161–169 (2003).
  • Lund SS, Tarnow L, Stehouwer CD et al. Targeting hyperglycaemia with either metformin or repaglinide in non-obese patients with Type 2 diabetes: results from a randomized crossover trial. Diabetes Obes. Metab.9(3), 394–407 (2007).
  • Caballero AE, Delgado A, Aguilar-Salinas CA et al. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J. Clin. Endocrinol. Metab.89(8), 3943–3982 (2004).
  • Matsumoto K, Sera Y, Abe Y, Tominaga T, Yeki Y, Miyake S. Metformin attenuates progression of carotid arterial wall thickness in patients with Type 2 diabetes. Diabetes. Res. Clin. Pract.64(3), 225–228. (2004).
  • Katakami N, Yamasaki Y, Hayaishi-Okano R et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with Type 2 diabetes. Diabetologia47(11), 1906–1913 (2004).
  • UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34). Lancet352(9131), 854–865 (1998).
  • Hollingdal M, Sturis J, Gall MA et al. Repaglinide treatment amplifies first-phase insulin secretion and high-frequency pulsatile insulin release in Type 2 diabetes. Diabet. Med.22(10), 1408–1413 (2005).
  • Li J, Tian H, Li Q et al. Improvement of insulin sensitivity and β-cell function by nateglinide and repaglinide in Type 2 diabetic patients – a randomized controlled double-blind and double-dummy multicentre clinical trial. Diabetes Obes. Metab.9(4), 558–565 (2007).
  • Cozma LS, Luzio SD, Dunseath GJ, Langendorg KW, Pieber T, Owens DR. Comparison of the effects of three insulinotropic drugs on plasma insulin levels after a standard meal. Diabetes Care25(8), 1271–1276 (2002).
  • Van Gaal LF, Van Acker KL, De Leeuw IH. Repaglinide improves blood glucose control in sulphonylurea-naive Type 2 diabetes. Diabetes. Res. Clin. Pract.53(3), 141–148 (2001).
  • Schmitz O, Lund S, Andersen PH, Jønler M, Pørksen N. Optimizing insulin secretagogue therapy in patients with Type 2 diabetes: a randomized double-blind study with repaglinide. Diabetes Care25(2), 342–346 (2002).
  • Schmoelzer I, Wascher TC. Effect of repaglinide on endothelial dysfunction during a glucose tolerance test in subjects with impaired glucose tolerance. Cardiovasc. Diabetol.5, 9 (2006).
  • Manzella D, Grella R, Abbatecola AM, Paolisso G. Repaglinide administration improves brachial reactivity in Type 2 diabetic patients. Diabetes Care28(2), 366–371 (2005).
  • Rizzo MR, Barbieri M, Grella R, Passariello N, Paolisso G. Repaglinide has more beneficial effect on cardiovascular risk factors than glimepiride: data from meal-test study. Diabetes Metab.31(3 Pt 1), 255–260 (2005).
  • Rizzo MR, Barbieri M, Grella R, Passariello N, Barone M, Paolisso G. Repaglinide is more efficient than glimepiride on insulin secretion and post-prandial glucose excursions in patients with Type 2 diabetes. A short term study. Diabetes Metab.30(1), 81–89 (2004).
  • Moses RG, Gomis R, Frandsen KB, Schlienger JL, Dedov I. Flexible meal-related dosing with repaglinide facilitates glycemic control in therapy-naive Type 2 diabetes. Diabetes Care24, 11–15 (2001).
  • Landgraf R, Frank M, Bauer C, Dieken ML. Prandial glucose regulation with repaglinide: its clinical and lifestyle impact in a large cohort of patients with Type 2 diabetes. Int. J. Obesity.24, 38–44 (2000).
  • Esposito K, Giugliano D, Nappo F, Marfella R; Campanian Postprandial Hyperglycemia Study Group. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in Type 2 diabetes mellitus. Circulation110(2), 214–219 (2004).
  • Barnett AH, Anderson DM, Shelley S, Morgan R, Owens DR. A placebo-controlled crossover study comparing the effects of nateglinide and glibenclamide on postprandial hyperglycaemia and hyperinsulinaemia in patients with Type 2 diabetes. Diabetes Obes. Metab.6(2), 104–113 (2004).
  • Mita T, Watada H, Shimizu T et al. Nateglinide reduces carotid intima-media thickening in Type 2 diabetic patients under good glycemic control. Arterioscler. Thromb. Vasc. Biol.27(11), 2456–2462 (2007).
  • Rosenstock J, Hassman DR, Madder RD et al.; Repaglinide Versus Nateglinide Comparison Study Group. Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care27(6), 1265–1270 (2004).
  • Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J. Clin. Endocrinol. Metab.91(3), 837–842 (2006).
  • Wascher TC, Schmoelzer I, Wiegratz A et al. Reduction of postchallenge hyperglycaemia prevents acute endothelial dysfunction in subjects with impaired glucose tolerance. Eur. J. Clin. Invest.35(9), 551–557 (2005).
  • Ceriello A, Taboga C, Tonutti L et al. Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia39, 469–473 (1996).
  • Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke35, 1073–1078 (2004)
  • Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M; STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. J. Am. Med. Assoc.290(4), 486–294 (2003).
  • Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in Type 2 diabetic patients: meta-analysis of seven long-term studies. Eur. Heart. J.25, 10–16 (2004).
  • Swislocki A, Lardinois CK, Starich GH. Acarbose attenuates Basal and postprandial insulin concentrations but fails to lower blood pressure in the spontaneously hypertensive rat. Metab. Syndr. Relat. Disord.5(4), 297–304 (2007).
  • Nakamura K, Yamagishi S, Matsui T, Inoue H. Acarbose, an α-glucosidase inhibitor, improves insulin resistance in fructose-fed rats. Drugs. Exp. Clin. Res.31(4), 155–159 (2005).
  • Rachmani R, Bar-Dayan Y, Ronen Z, Levi Z, Slavachevsky I, Ravid M. The effect of acarbose on insulin resistance in obese hypertensive subjects with normal glucose tolerance: a randomized controlled study. Diabetes Obes. Metab.6(1), 63–68 (2004).
  • Chiasson JL. The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance. Diabet. Med.13(3 Suppl. 2), S23–S24 (1996).
  • Delgado H, Lehmann T, Bobbioni-Harsch E, Ybarra J, Golay A. Acarbose improves indirectly both insulin resistance and secretion in obese Type 2 diabetic patients. Diabetes Metab.28(3), 195–200 (2002).
  • Ogawa S, Takeuchi K, Ito S. Acarbose lowers serum triglyceride and postprandial chylomicron levels in Type 2 diabetes. Diabetes Obes. Metab.6(5), 384–390 (2004).
  • Perriello G, Pampanelli S, Porcellati F et al. Insulin aspart improves meal time glycaemic control in patients with Type 2 diabetes: a randomized, stratified, double-blind and cross-over trial. Diabet. Med.22(5), 606–611 (2005).
  • Rosenfalck AM, Thorsby P, Kjems L et al. Improved postprandial glycaemic control with insulin Aspart in Type 2 diabetic patients treated with insulin. Acta. Diabetol.37(1), 41–46 (2000).
  • Lindholm A, McEwen J, Riis AP. Improved postprandial glycemic control with insulin aspart. A randomized double-blind cross-over trial in Type 1 diabetes. Diabetes Care22(5), 801–805 (1999).
  • Home PD, Lindholm A, Hylleberg B, Round P. Improved glycemic control with insulin aspart: a multicenter randomized double-blind crossover trial in Type 1 diabetic patients. UK Insulin Aspart Study Group. Diabetes Care21(11), 1904–1909 (1998).
  • Griffen SC, Oostema K, Stanhope KL et al. Administration of Lispro insulin with meals improves glycemic control, increases circulating leptin, and suppresses ghrelin, compared with regular/NPH insulin in female patients with Type 1 diabetes. J. Clin. Endocrinol. Metab.91(2), 485–491 (2006).
  • Holcombe JH, Zalani S, Arora VK, Mast CJ; Lispro in Adolescents Study Group. Comparison of insulin lispro with regular human insulin for the treatment of Type 1 diabetes in adolescents. Clin. Ther.24(4), 629–638 (2002).
  • Roach P, Trautmann M, Arora V, Sun B, Anderson JH Jr. Improved postprandial blood glucose control and reduced nocturnal hypoglycemia during treatment with two novel insulin lispro-protamine formulations, insulin lispro mix25 and insulin lispro mix50. Mix50 Study Group. Clin. Ther.21(3), 523–534 (1999).
  • Rayman G, Profozic V, Middle M. Insulin glulisine imparts effective glycaemic control in patients with Type 2 diabetes. Diabetes Res. Clin. Pract.76(2), 304–312 (2007).
  • Dailey G, Rosenstock J, Moses RG, Ways K. Insulin glulisine provides improved glycemic control in patients with Type 2 diabetes. Diabetes Care27(10), 2363–2368 (2004).
  • Ceriello A, Cavarape A, Martinelli L et al. The post-prandial state in Type 2 diabetes and endothelial dysfunction: effects of insulin aspart. Diabet. Med.21(2), 171–175 (2004).
  • Evans M, Anderson RA, Smith JC et al. Effects of insulin lispro and chronic vitamin C therapy on postprandial lipaemia, oxidative stress and endothelial function in patients with Type 2 diabetes mellitus. Eur. J. Clin. Invest.33(3), 231–238 (2003).
  • Ahmed N, Babaei-Jadidi R, Howell SK, Thornalley PJ, Beisswenger PJ. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care.28(10), 2465–2471 (2005).
  • Forst T, Forst S, Strunk K et al. Impact of insulin on microvascular blood flow and endothelial cell function in the postprandial state in patients with Type 1 diabetes. J. Diabetes Complications19(3), 128–132 (2005).
  • Ceriello A, Quagliaro L, Catone B et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care25(8), 1439–1443 (2002).
  • Ahmed N, Babaei-Jadidi R, Howell SK, Thornalley PJ, Beisswenger PJ. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care28(10), 2465–2471 (2005).
  • Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in Type 2 diabetes: systematic review and meta-analysis. J. Am. Med. Assoc.298(2), 194–206 (2007).
  • Geelhoed-Duijvestijn PH. Incretins: a new treatment option for Type 2 diabetes? Neth. J. Med.65(2), 60–64 (2007).
  • Ahrén B. Dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. Diabetes Care30(6), 1344–1350 (2007).
  • Geelhoed-Duijvestijn PH. Incretins: a new treatment option for type 2 diabetes? Neth. J. Med.5(2), 60–64 (2007).
  • Gastaldelli A, Casolaro A, Pettiti M et al. Effect of pioglitazone on the metabolic and hormonal response to a mixed meal in Type II diabetes. Clin. Pharmacol. Ther.81(2), 205–212 (2007).
  • Raskin P, Rappaport EB, Cole ST, Yan Y, Patwardhan R, Freed MI. Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with Type II diabetes. Diabetologia43(3), 278–284 (2000).
  • Rydén L, Standl E, Bartnik M et al.; Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC); European Association for the Study of Diabetes (EASD). Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J.28(1), 88–136 (2007).
  • van Wijk J, Coll B, Cabezas MC et al. Rosiglitazone modulates fasting and post-prandial paraoxonase 1 activity in Type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol.33(12), 1134–1137 (2006).
  • Mittermayer F, Schaller G, Pleiner J et al. Rosiglitazone prevents free fatty acid-induced vascular endothelial dysfunction. J. Clin. Endocrinol. Metab.92(7), 2574–2580 (2007).
  • Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care30(2), 263–269 (2007).
  • AACE Diabetes Mellitus Clinical Practice Gudelines Task Force. American Association of Clinical Endocrinologists medical gudelines for clinical practice for the management of diabetes mellitus. Endocrin. Pract.13 (Suppl. 1), 5–68 (2007)
  • Nathan DM, Buse JM, Davidson MB et al. Management of hyperglycaemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American. Diabetes Association and the European Association for the Study of Diabetes. Diabetologia49, 1711–1721 (2006).
  • Fineman M, Weyer C, Maggs DG, Strobel S, Kolterman OG. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with Type 2 diabetes mellitus. Horm. Metab. Res.34(9), 504–508 (2002).
  • Weyer C, Gottlieb A, Kim DD et al. Pramlintide reduces postprandial glucose excursions when added to regular insulin or insulin lispro in subjects with Type 1 diabetes: a dose-timing study. Diabetes Care.26(11), 3074–3079 (2003).
  • Levetan C, Want LL, Weyer C et al. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with Type 1 diabetes intensively treated with insulin pumps. Diabetes Care26(1), 1–8 (2003).
  • Maggs DG, Fineman M, Kornstein J et al. Pramlintide reduces postprandial glucose excursions when added to insulin lispro in subjects with Type 2 diabetes: a dose-timing study. Diabetes Metab. Res. Rev.20(1), 55–60 (2004).
  • Despres JP, Golay A, Sjostrom L; Rimonabant in Obesity-Lipids Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med.353, 2121–2134 (2005).
  • Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S; RIO-Europe Study Group. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet365(9468), 1389–1397 (2005).
  • Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF; RIO-Diabetes Study Group: Efficacy and tolerability of rimonabant in overweight or obese patients with Type 2 diabetes: a randomised controlled study. Lancet368(9548), 1660–1672 (2006).
  • Damci T, Yalin S, Balci H et al. Orlistat augments postprandial increases in glucagon-like peptide 1 in obese Type 2 diabetic patients. Diabetes Care.27(5), 1077–1080 (2004).
  • Suter PM, Marmier G, Veya-Linder C et al. Effect of orlistat on postprandial lipemia, NMR lipoprotein subclass profiles and particle size. Atherosclerosis.180(1), 127–135 (2005).
  • Tan KC, Tso AW, Tam SC, Pang RW, Lam KS. Acute effect of orlistat on post-prandial lipaemia and free fatty acids in overweight patients with Type 2 diabetes mellitus. Diabet. Med.19(11), 944–948 (2002).
  • Porksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes51, S245–S254 (2002).
  • Meier JJ, Kjems LL, Veldhuis JD, Lefèbvre P, Butler PC. Postprandial suppression of glucagon secretion depends on intact pulsatile insulin secretion: further evidence for the intraislet insulin hypothesis. Diabetes55(4), 1051–1056 (2006).
  • Hollingdal M, Sturis J, Gall MA et al. Repaglinide treatment amplifies first-phase insulin secretion and high-frequency pulsatile insulin release in Type 2 diabetes. Diabet. Med.22(10), 1408–1413 (2005).
  • Juhl CB, Pørksen N, Hollingdal M et al. Repaglinide acutely amplifies pulsatile insulin secretion by augmentation of burst mass with no effect on burst frequency. Diabetes Care23(5), 675–681 (2000).
  • Meneilly GS, Veldhuis JD, Elahi D. Deconvolution analysis of rapid insulin pulses before and after six weeks of continuous subcutaneous administration of glucagon-like peptide-1 in elderly patients with Type 2 diabetes. J. Clin. Endocrinol. Metab.90(11), 6251–6256 (2005).
  • Cunningham BA, Richard AM, Dillon JS et al. Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets. Biochem. J.369(Pt 1), 173–178 (2003).
  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J. Am. Med. Assoc.297(8), 842–857 (2007).
  • Liu L, Zhao SP, Zhou HN, Li QZ, Li JX. Effect of fluvastatin and valsartan, alone and in combination, on postprandial vascular inflammation and fibrinolytic activity in patients with essential hypertension. J. Cardiovasc. Pharmacol.50(1), 50–55 (2007).
  • Ceriello A, Assaloni R, Da Ros R et al. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in Type 2 diabetic patients. Circulation111(19), 2518–2524 (2005).
  • Wilmink HW, Banga JD, Hijmering M, Erkelens WD, Stroes ES, Rabelink TJ. Effect of angiotensin-converting enzyme inhibition and angiotensin II Type 1 receptor antagonism on postprandial endothelial function. J. Am. Coll. Cardiol.34(1), 140–145 (1999).

Website

  • Global guideline for Type 2 diabetes. IDF Task Force on Clinical Guidelines, International Diabetes Federation. www.idf.org (Accessed 2006)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.