1,231
Views
5
CrossRef citations to date
0
Altmetric
Editorial

Cardiac mapping and stem cell delivery for the damaged myocardium

, &
Pages 1181-1190 | Published online: 10 Jan 2014

References

  • Rich MW. Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J. Am. Geriatr. Soc.45(8), 968–974 (1997).
  • Haldeman GA, Croft JB, Giles WH, Rashidee A. Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. Am. Heart J.137(2), 352–360 (1999).
  • Maier B, Thimme W, Schoeller R, Fried A, Behrens S, Theres H. Improved therapy and outcome for patients with acute myocardial infarction – Data of the Berlin Myocardial Infarction Registry from 1999 to 2004. Int. J. Cardiol. DOI 10.1016/j.ijcard.2007.08.043 (2007) (Epub ahead of print).
  • Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation101(11), 1288–1296 (2000).
  • Boulos M, Lashevsky I, Reisner S, Gepstein L. Electroanatomic mapping of arrhythmogenic right ventricular dysplasia. J. Am. Coll. Cardiol.38(7), 2020–2027 (2001).
  • Callans DJ, Ren JF, Michele J, Marchlinski FE, Dillon SM. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation100(16), 1744–1750 (1999).
  • Hsia HH, Callans DJ, Marchlinski FE. Characterization of endocardial electrophysiological substrate in patients with nonischemic cardiomyopathy and monomorphic ventricular tachycardia. Circulation108(6), 704–710 (2003).
  • Kornowski R, Leon MB, Fuchs S et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J. Am. Coll. Cardiol.35(4), 1031–1039 (2000).
  • Gepstein L, Hayam G, Shpun S, Ben-Haim SA. Hemodynamic evaluation of the heart with a nonfluoroscopic electromechanical mapping technique. Circulation96(10), 3672–3680 (1997).
  • Kornowski R, Hong MK, Gepstein L et al. Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation98(11), 1116–1124 (1998).
  • Gyongyosi M, Sochor H, Khorsand A, Gepstein L, Glogar D. Online myocardial viability assessment in the catheterization laboratory via NOGA electroanatomic mapping: quantitative comparison with thallium-201 uptake. Circulation104(9), 1005–1011 (2001).
  • Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitroand in vivo accuracy results. Circulation95(6), 1611–1622 (1997).
  • Kornowski R, Fuchs S, Tio FO, Pierre A, Epstein SE, Leon MB. Evaluation of the acute and chronic safety of the biosense injection catheter system in porcine hearts. Catheter Cardiovasc. Interv.48(4), 447–453; discussion 454–445 (1999).
  • Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nat. Med.2(12), 1393–1395 (1996).
  • Klemm HU, Franzen O, Ventura R, Willems S. Catheter based simultaneous mapping of cardiac activation and motion: a review. Indian Pacing Electrophysiol. J.7(3), 148–159 (2007).
  • Klemm HU, Steven D, Johnsen C et al. Catheter motion during atrial ablation due to the beating heart and respiration: impact on accuracy and spatial referencing in three-dimensional mapping. Heart Rhythm4(5), 587–592 (2007).
  • Noseworthy PA, Malchano ZJ, Ahmed J, Holmvang G, Ruskin JN, Reddy VY. The impact of respiration on left atrial and pulmonary venous anatomy: implications for image-guided intervention. Heart Rhythm2(11), 1173–1178 (2005).
  • Kornowski R, Fuchs S, Shiran A et al. Catheter-based electromechanical mapping to assess regional myocardial function: a comparative analysis with transthoracic echocardiography. Catheter Cardiovasc. Interv.52(3), 342–347 (2001).
  • Lessick J, Smeets JL, Reisner SA, Ben-Haim SA. Electromechanical mapping of regional left ventricular function in humans: comparison with echocardiography. Catheter Cardiovasc. Interv.50(1), 10–18 (2000).
  • Kornowski R, Hong MK, Shiran A et al. Electromechanical characterization of acute experimental myocardial infarction. J. Invasive Cardiol.11(6), 329–336 (1999).
  • Fuchs S, Kornowski R, Shiran A, Pierre A, Ellahham S, Leon MB. Electromechanical characterization of myocardial hibernation in a pig model. Coron. Artery Dis.10(3), 195–198 (1999).
  • Lessick J, Hayam G, Zaretsky A, Reisner SA, Schwartz Y, Ben-Haim SA. Evaluation of inotropic changes in ventricular function by NOGA mapping: comparison with echocardiography. J. Appl. Physiol.93(2), 418–426 (2002).
  • Poppas A, Sheehan FH, Reisman M, Harms V, Kornowski R. Validation of viability assessment by electromechanical mapping by three-dimensional reconstruction with dobutamine stress echocardiography in patients with coronary artery disease. Am. J. Cardiol.93(9), 1097–1101 (2004).
  • Barrington SF, Chambers J, Hallett WA, O’Doherty MJ, Roxburgh JC, Nunan TO. Comparison of sestamibi, thallium, echocardiography and PET for the detection of hibernating myocardium. Eur. J. Nucl. Med. Mol. Imaging31(3), 355–361 (2004).
  • Bonow RO, Dilsizian V. Assessing viable myocardium with thallium-201. Am. J. Cardiol.70(14), E10–E17 (1992).
  • Bonow RO, Dilsizian V. Thallium-201 and technetium-99m-sestamibi for assessing viable myocardium. J. Nucl. Med.33(5), 815–818 (1992).
  • Fernandes VB, Ben Freedman S, Allman KC et al. Detection of myocardial viability in stunned or hibernating myocardium by delayed emptying on radionuclide ventriculography. Am. J. Cardiol.67(6), 529–532 (1991).
  • Haque T, Furukawa T, Takahashi M, Kinoshita M. Identification of hibernating myocardium by dobutamine stress echocardiography: comparison with thallium-201 reinjection imaging. Am. Heart J.130(3 Pt 1), 553–563 (1995).
  • Hoeflin F, Roesler H, Ledermann H, Romanello S, Weinreich R. Detection of non-perfused, viable myocardium with 18F-FDG using a specially designed gamma camera. A simple method to detect hibernating myocardium. Acta Radiol. Suppl.376, 133–134 (1991).
  • Kuikka JT, Mussalo H, Hietakorpi S, Vanninen E, Lansimies E. Evaluation of myocardial viability with technetium-99m hexakis-2-methoxyisobutyl isonitrile and iodine-123 phenylpentadecanoic acid and single photon emission tomography. Eur. J. Nucl. Med.19(10), 882–889 (1992).
  • Marwick TH, MacIntyre WJ, Salcedo EE, Go RT, Saha G, Beachler A. Identification of ischemic and hibernating myocardium: feasibility of post-exercise F-18 deoxyglucose positron emission tomography. Cathet. Cardiovasc. Diagn.22(2), 100–106 (1991).
  • Matsuo H, Watanabe S, Nishida Y et al. Identification of asynergic but viable myocardium in patients with chronic coronary artery disease by gated blood pool scintigraphy during isosorbide dinitrate and low-dose dobutamine infusion: comparison with thallium-201 scintigraphy with reinjection. Ann. Nucl. Med.8(4), 283–293 (1994).
  • Parodi O, De Maria R, Testa R et al. Super-normal 201Tl retention in hibernating myocardium: an ex-vivo study using the failing human heart. Cardiovasc. Res.38(3), 727–735 (1998).
  • Kornowski R, Hong MK, Leon MB. Comparison between left ventricular electromechanical mapping and radionuclide perfusion imaging for detection of myocardial viability. Circulation98(18), 1837–1841 (1998).
  • Gyongyosi M, Khorsand A, Sochor H et al. Characterization of hibernating myocardium with NOGA electroanatomic endocardial mapping. Am. J. Cardiol.95(6), 722–728 (2005).
  • Koch KC, vom Dahl J, Wenderdel M et al. Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J. Am. Coll. Cardiol.38(1), 91–98 (2001).
  • Wiggers H, Botker HE, Sogaard P et al. Electromechanical mapping versus positron emission tomography and single photon emission computed tomography for the detection of myocardial viability in patients with ischemic cardiomyopathy. J. Am. Coll. Cardiol.41(5), 843–848 (2003).
  • Perin EC, Silva GV, Sarmento-Leite R et al. Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation106(8), 957–961 (2002).
  • Vale PR, Losordo DW, Tkebuchava T, Chen D, Milliken CE, Isner JM. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J. Am. Coll. Cardiol.34(1), 246–254 (1999).
  • Oron U, Halevy O, Yaakobi T et al. Technical delivery of myogenic cells through an endocardial injection catheter for myocardial cell implantation. Int. J. Cardiovasc. Intervent.3(4), 227–230 (2000).
  • Vale PR, Losordo DW, Milliken CE et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation103(17), 2138–2143 (2001).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–967 (1997).
  • Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85(3), 221–228 (1999).
  • Kawamoto A, Gwon HC, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation103(5), 634–637 (2001).
  • Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med.7(4), 430–436 (2001).
  • Kawamoto A, Tkebuchava T, Yamaguchi J et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation107(3), 461–468 (2003).
  • Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res.95(1), 9–20 (2004).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Orlic D, Kajstura J, Chimenti S et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl Acad. Sci. USA98(18), 10344–10349 (2001).
  • Aicher A, Brenner W, Zuhayra M et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation107(16), 2134–2139 (2003).
  • Barbash IM, Chouraqui P, Baron J et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation108(7), 863–868 (2003).
  • Bittner RE, Schofer C, Weipoltshammer K et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl.)199(5), 391–396 (1999).
  • Robinson SW, Cho PW, Levitsky HI et al. Arterial delivery of genetically labelled skeletal myoblasts to the murine heart: long-term survival and phenotypic modification of implanted myoblasts. Cell Transplant5(1), 77–91 (1996).
  • Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol.44(8), 1690–1699 (2004).
  • Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106(15), 1913–1918 (2002).
  • Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364(9429), 141–148 (2004).
  • Erbs S, Linke A, Adams V et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ. Res.97(8), 756–762 (2005).
  • Fuchs S, Satler LF, Kornowski R et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol.41(10), 1721–1724 (2003).
  • Perin EC, Dohmann HF, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation107(18), 2294–2302 (2003).
  • Perin EC, Dohmann HF, Borojevic R et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation110(11 Suppl.1), II213–II218 (2004).
  • Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet361(9351), 47–49 (2003).
  • Patel AN, Geffner L, Vina RF et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J. Thorac. Cardiovasc. Surg.130(6), 1631–1638 (2005).
  • Amado LC, Saliaris AP, Schuleri KH et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. USA102(32), 11474–11479 (2005).
  • Freyman T, Polin G, Osman H et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur. Heart J.27(9), 1114–1122 (2006).
  • Pompilio G, Steinhoff G, Liebold A et al. Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results. Thorac. Cardiovasc. Surg.56(2), 71–76 (2008).
  • Pompilio G, Cannata A, Peccatori F et al. Autologous peripheral blood stem cell transplantation for myocardial regeneration: a novel strategy for cell collection and surgical injection. Ann. Thorac. Surg.78(5), 1808–1812 (2004).
  • Herreros J, Prosper F, Perez A et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur. Heart J.24(22), 2012–2020 (2003).
  • Menasche P, Hagege AA, Scorsin M et al. Myoblast transplantation for heart failure. Lancet357(9252), 279–280 (2001).
  • Menasche P, Hagege AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol.41(7), 1078–1083 (2003).
  • Siminiak T, Kalawski R, Fiszer D et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am. Heart J.148(3), 531–537 (2004).
  • Makkar RR, Lill M, Chen PS. Stem cell therapy for myocardial repair: is it arrhythmogenic? J. Am. Coll. Cardiol.42(12), 2070–2072 (2003).
  • Miyahara Y, Nagaya N, Kataoka M et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.12(4), 459–465 (2006).
  • Breitbach M, Bostani T, Roell W et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood110(4), 1362–1369 (2007).
  • Young PP, Vaughan DE, Hatzopoulos AK. Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog. Cardiovasc. Dis.49(6), 421–429 (2007).
  • Iwasaki H, Kawamoto A, Ishikawa M et al. Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation113(10), 1311–1325 (2006).
  • Patterson M, Duckers E, Ramacharitar S et al. Magnetically supported procedures and cardiac regeneration. Eurointervention2(Suppl. B), B42–B46 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.