16
Views
8
CrossRef citations to date
0
Altmetric
Review

A plethora of targets, a paucity of drugs: progress towards the development of novel chemotherapies for human African trypanosomiasis

&
Pages 157-165 | Published online: 10 Jan 2014

References

  • WHO. Control & surveillance of African trypanosomiasis. Report of a WHO expert committee. 881,1–114 (1998).
  • Legros D, ollivier G, Gastellu-Etchegorry M, et al Treatment of human African trypanosomiasis-present situation and needs for research and development. Lancet Infect. Dis. 2,437–440 (2002).
  • •This recent review concisely summarizes the present situation with regard to HAT and chemotherapy, and addresses some of the challenges concerning drug supply and drug resistance.
  • Burchmore RJ, Ogbunude PO, Enanga B, Barrett MR Chemotherapy of human African trypanosomiasis. Gun: Pharm. Des 8,256–267 (2002).
  • Enanga B, Burchmore RJ, Stewart ML, Barrett MP. Sleeping sickness and the brain. Cell Mol. Life Sc]. 59,845–858 (2002).
  • Matovu E, Seebeck T, Enyaru JC, Kaminsky, R. Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. Maybes Infect. 3, 763–770 (2001).
  • ••This paper (together with [6] and [9]) addresses the important issue of melarsoprol resistant trypanosomes, and relates mutations in lab-derived drug resistant parasites with parasites isolated from patients whose disease was refractory to melarsoprol therapy.
  • Matovu E, Enyaru JC, Legros D, Schmid, C, Seebeck, T, Kaminsky R. Melarsoprol refractory T b. gambiense from Omugo, north-western Uganda. Tmp. Merl Int. Health 6,407–411 (2001).
  • Barry JD. The molecular biology of African trypanosomes. Pop. Dis. Bull. 83, R1–R25 (1986).
  • Pepin J, Milord F, Khonde AN, etal Risk factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma &mei gambiense sleeping sickness. Trans. R. Soc. Trop. Merl Hyg. 89, 92–97 (1995).
  • Matovu E, Geiser F, Schneider V, etal Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy. Mal Biochem. Parasitol 117, 73–81.
  • Pepin J, Milord E The treatment of human African trypanosomiasis. Adv. Parasitol 33, 1–47 (1994).
  • McCann PP, Pegg AE. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Then 54, 195–215 (1992).
  • Pepin J, Milord F, Meurice F, Ethier L, Loko L, Mpia B. High-dose nifurtimox for arseno-resistant Trypanosoma brucei gambiense sleeping sickness: an open trial in central Zaire. Trans. R. Soc. Tmp. Med. Hyg. 86, 254–256 (1992).
  • Hannaert V, Saavedra E, Duffieux F, et al Plant-like traits associated with metabolism of Trypanosoma parasites. Proc. Natl Acad. Sc]. USA 100, 1067–1071 (2003). Suggests that several metabolic pathways in trypanosomes are more closely related to those of plants than to metazoa. This is an important observation in the context of identification of drug targets.
  • Seyfang A, Duszenko M. Specificity of glucose-transport in trypanosoma-brucei-effective inhibition by phloretin and cytochalasin-b. Eur j Biochem. 202, 191–196 (1991).
  • Barrett MP, Tetaud E, Seyfang A, Bringaud F, Baltz T Trypanosome glucose transporters. Mal Biochem. Parasitol 91, 195–205 (1998).
  • Bakker BM, Walsh MC, Ter Kuile BH, et al. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei Proc. Natl Acad. Sc]. USA 96, 10098–10103 (1999).
  • Bressi JC, Verlinde CL, Aronov AM, etal. Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Typanosomatidae via structure-based drug design. J. Med. Chem. 44, 2080–2093 (2001). Describes one of the most advanced projects to develop specific antitrypanosomal compounds.
  • Lakhdar-Ghazal F, Blonski C, Willson M, Michels P, Perie J. Glycolysis and proteases as targets for the design of new antitrypanosome drugs. Curl-. Top. Med. Chem. 2, 439–456 (2002).
  • Blattner J, Helfert S, Michels P, Clayton C. Compartmentation of phosphoglycerate kinase in Trypanosoma brucei plays a critical role in parasite energy metabolism. Proc. Natl Acad. Sc]. USA 95, 11596–11600 (1998).
  • Furuya T, Kessler P, Jardim A, Schnaufer A, Crudder C, Parsons M. Glucose is toxic to glycosome-deficient trypanosomes. Proc. Natl Acad. Sc]. USA 99, 14177–14182 (2002).
  • Wiemer EA, Ter Kuile BH, Michels PA, Opperdoes FR. Pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei is mediated by a facilitated diffusion carrier. Biochem. Biophys. Res. Commun. 184, 1028–1034 (1992).
  • Wiemer EA, Michels PA, Opperdoes FR. The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications. Biochem. 1. 312 (Pt 2), 479–484 (1995).
  • Chaudhuri M, Ajayi W, Hill GC. Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mal Biochem. Parasitol 95, 53–68 (1998).
  • Barrett MP. The pentose phosphate pathway and parasitic protozoa. Parasitol Today13, 11–16 (1997).
  • Roper JR, Guther ML, Milne KG, Ferguson MA. Galactose metabolism is essential for the African sleeping sickness parasite Trypanosoma brucei. Proc. Natl. Acad. Sc]. USA 99, 5884–5889 (2002).
  • Patnaik PK, Field MC, Menon AK, Cross GAM, Yee MC, Batikofer P. Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mal Biochem. Parasitol 58, 97–106 (1993).
  • Croft SL, Snowdon D, Yardley V. The activities of four anticancer alkyllysophospholipids against Leishmania donovard, Trypanosoma cnizi and Trypanosoma brucei j Antimicrob. Chemother. 38, 1041–1047 (1996).
  • Morita YS, Paul KS, Englund PT. Specialized fatty acid synthesis in African trypanosomes: myristate for CPI anchors. Science 288, 140–143 (2000).
  • Morita YS, Englund PT Fatty acid remodeling of glycosyl phosphatidylinositol anchors in Trypanosoma brucet. incorporation of fatty acids other than myristate. MolBiochem.Parasitol 115, 157–164 (2001).
  • Martin MB, Grimley JS, Lewis JC, etal. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovard, Toxoplasma gond]] and Rasmodium falcipaturg a potential route to chemotherapy. J. Med. Chem. 44, 909–916 (2001).
  • Martin MB, Sanders JM, Kendrick H, etal Activity of bisphosphonates against Trypanosoma brucei rhodesiense.. 1. Med. Chem. 45, 2904–2914 (2002).
  • Sun J, Qian Y, Hamilton AD, Sebti SM. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16, 1467–1473 (1998).
  • Buckner FS, Yokoyama K, Nguyen L, etal. Cloning, heterologous expression and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei j Biol. Chem. 275, 21870–21876 (2000).
  • Yokoyama K, Trobridge P, Buckner FS, Van Voorhis WC, Stuart KD, Gelb MH. Protein farnesyltransferase from Trypanosoma brucei-A heterodimer of 61-and 65-kDa subunits as a new target for antiparasite therapeutics. J. Biol. Chem. 273, 26497–26505 (1998).
  • Yokoyama K, Trobridge P, Buckner FS, et al The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Ma Biochem. Parasitol 94, 87–97 (1998).
  • Clerici F, Gelmi ML, Yokoyama K, etal Isothiazole dioxides: synthesis and inhibition of Trypanosoma brucei protein farnesyltransferase. Bioorg. Med. Chem. Lett. 12, 2217–2220 (2002).
  • Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mal Cell 10, 175–186 (2002).
  • Morris JC, Drew ME, Klingbeil MM, etal Replication of kinetoplast DNA: an update for the new millennium. int. J. Parasitol 31, 453–458 (2001).
  • Wang Z, Englund PT RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO J. 20, 4674–4683 (2001).
  • Nenortas EC, Bodley AL, Shapiro TA. DNA topoisomerases: a new twist for antiparasitic chemotherapy? Biochimica et Biophysica Acta: Gene Struct. Expression 1400,349–354 (1998).
  • Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int. J. Patasitol 32, 1071–1084 (2002).
  • Schnaufer A, Panigrahi AK, Panicucci B, etal An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science 291, 2159–2162 (2001).
  • Dumas C, Ouellette M, Tovar J, et al Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBOJ 16,2590–2598 (1997).
  • Phillips C, Dohnalek J, Gover S, Barrett MP, Adams MJ. A 2.8 A resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. J. Mal Biol. 282,667–681 (1998).
  • Schmidt A, Krauth-Siegel RL. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. CUI7: Top. Med. Chem. 2,1239-1259 (2002).
  • Bouteille B, Marie-Daragon A, Chauviere G, etal. Effect of megazol on Trypanosoma brucei brucei acute and subacute infections in Swiss mice. Acta Trop. 60, 73–80 (1995).
  • Moreno SN. The reductive metabolism of nifurtimox and benznidazole in Crithidia fasciculata is similar to that in Trypanosoma cruzi. Comp Biochem. Physiol C 91, 321–325 (1988).
  • Maya JD, Repetto Y, Agosin M, etal Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma auzi. MolBiochem. Patasitol 86,101–106 (1997).
  • Ferreira RC, Ferreira LC. CL 64,855, a potent anti Trypanosoma auzi drug, is also mutagenic in the Salmonella/microsome assay. 114em. Inst. Oswald° Cruz81, 49–52 (1986).
  • Nurse P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000).
  • Knockaert M, Greengard P, Meijer L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Li.23,417-425 (2002). Hammarton TC, Mottram JC, DoerigC. The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation. 91–101 (2002).
  • Mottram JC, Smith G. A family of trypanosome cdc2-related protein kinases. Gene 162,147–152 (1995).
  • Mottram JC. cdc2-related protein kinases and cell cycle control in trypanosomatids. Parasitol Today10, 253–257 (1994).
  • Hassan P, Fergusson D, Grant KM, Mottram J C. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mal Biochem. Patasitol 113,189–198 (2001).
  • Xiao Z, Waters NC, Woodard CL, Li Z, Li PK. Design and synthesis of Pfmrk inhibitors as potential antimalarial agents. Bioorg. Med. Chem. Lett. 11,2875–2878 (2001).
  • Docampo R, Moreno SNJ. The acidocakisome. Mal Biochem. Patasitol 114,151–159 (2001).
  • McIntosh MT, Vaidya AB. Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. Int. J. Parasitol 32, 1–14 (2002).
  • Lemercier G, Dutoya S, Luo S, et al A vacuolar-type H+-pyrophosphatase governs maintenance of functional acidocalcisomes and growth of the insect and mammalian forms of Trypanosoma brucei. J. Biol. Chem. 277,37369–37376 (2002).
  • Drozdowicz YM, Shaw M, Nishi M, etal. Isolation and characterization of TgVP1, a Type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. J. Biol. Chem. 278,1075–1085 (2003).
  • Bakker BM, Westerhoff HV, Opperdoes FR, Michels PAM. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol Biochem. Patasitol 106,1–10 (2000).
  • Hasne M, Barrett MP. Drug uptake via nutrient transporters in Trypanosoma brucei. jApplIVlicrobiol. 89,697–701 (2000).
  • Wiemer EAC, Michels PAM, OpperdoesFR. The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications. Biochem. 312,479–484 (1995).
  • Wallace LJ, Candlish D, De Koning HP.Different substrate recognition motifs of human and trypanosome nucleobase transporters. Selective uptake of purine antimetabolites. J. Biol. Chem. 277, 26149–26156 (2002).
  • ••Exemplifies the strategy of exploiting differential substrate specificity of membrane transport systems to inhibit parasites.
  • Hofer A, Steverding D, Chabes A, Brun R, Thelander L. Trypanosoma brucei CTP synthetase: A target for the treatment of African sleeping sickness. Proc. Natl Acad. Sci. USA 98,6412–6416 (2001).
  • Miles RVV, Tyler PC, Evans GB, Fumeaux RII, Parkin DW, Schramm VL.Iminoribitol transition state analogue inhibitors of protozoan nucleoside hydrolases. Biochemistry38,13147-13154 (1999).
  • Benson TJ, Mckie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT Rationally designed selective inhibitors of trypanothione reductase-phenothiazines and related tricyclics as lead structures. Biochem. 286,9–11 (1992).
  • Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Ma 11/licrobiol. 35,542-552 (2000).
  • Bacchi CJ, Goldberg B, Garofalo-Hannan J, Rattendi D, Lyte P, Yarlett N. Fate of soluble methionine in African trypanosomes: Effects of metabolic inhibitors. Biochem. J. 309,737–743 (1995).
  • Mccann PP, Bacchi CJ, Clarkson AB, etal Inhibition of polyamine biosynthesis by a-difluoromethylornithine in african trypanosomes and pneumocystis-carinii as a basis of chemotherapy-biochemical and clinical aspects. Am. J. Trop. Med. Hyg. 35, 1153–1156 (1986).
  • Bacchi CJ, Yarlett N. Polyamine metabolism as chemotherapeutic target in protozoan parasites. Mini. Rev Merl Chem. 2,553–563 (2002).
  • Chowdhury SF, Di Lucrezia R, Guerrero RII, et al Novel inhibitors of Leishmanial dihydrofolate reductase. Bioorg. Med. Chem. Lett. 11,977–980(2001).
  • Ho CK, Shuman S. Trypanosoma brucei RNA triphosphatase. Antiprotozoal drug target and guide to eukaryotic phylogeny. J. Biol. Chem. 276, 46182–46186 (2001).
  • Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation in Leishmania. Ann. 7i-op. Med. Patasitol 93,781-807 (1999).
  • Nagamune K, Nozaki T, Maeda Y, etal Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei Proc. Natl Acad. Sci. USA 97,10336–10341 (2000).
  • Ferguson MAJ, Brimacombe JS, Brown JR, etal The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochim. Biophys. Acta Mal Basis Dis. 1455,327–340 (1999).
  • Nkemgu-Njinkeng J, Rosenkranz V, Wink M, Steverding D. Antitrypanosomal activities of proteasome inhibitors. Antimicrob. Agents Chemother. 46, 2038–2040 (2002).
  • Troeberg L, Morty RE, Pike RN, et al Cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei Exp. Patasitol 91,349–355 (1999).
  • Troeberg L, Chen X, Flaherty TM, etal Chalcone, acyl hydrazide and related amides kill cultured Trypanosoma brucei brucei Mol Merl 6,660–669 (2000).
  • Zoraghi R, Seebeck T The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei Proc. Natl. Acad. Li. USA 99, 4343–4348 (2002).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.