214
Views
202
CrossRef citations to date
0
Altmetric
Review

Bacterial biofilms: a diagnostic and therapeutic challenge

, , &
Pages 667-683 | Published online: 10 Jan 2014

References

  • Costerton JW, Stewart PS, Greenberg EP Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).
  • ••This concise review is considered thebenchmark description of the biofilm concept.
  • Davies DG, Parsek MR, Pearson JP,Iglewski BH, Costerton JW, Greenberg EP The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).
  • ••The discovery of cell—cell signalingmediating biofilm architecture and resistance constitutes a landmark in biofilm research.
  • Prigent-Combaret C, Dorel C, Vidal , Lejeune P Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. j Bacterial. 181, 5993–6002 (1999).
  • Tunney MM, Patrick S, Cur= MD, et al Detection of prosthetic hip infection at revision ardiroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene./ Clirz. Microbial 37, 3281–3290(1999).
  • •The authors illustrate the difficulties to detect in vivo biofihn infections by conventional sampling and culture techniques.
  • Rayner MG, Zhang Y, Cony MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAIVIA 279, 296–299 (1998).
  • Zimmerli W Ochsner PE. Management of infection associated with prosthetic joints. Infection 31, 99–108 (2003).
  • •This clinically highly relevant review covers both diagnostic and therapeutic problems in the management of prosthetic joint infections.
  • Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAIVIA 279, 1537–1541 (1998).
  • Drancourt M, Stein A, Argenson JN, Roiron R Groufier Raoult D.. Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampithn.j Antimicrob. Chemother. 39, 235–240 (1997).
  • •Much more needs to be learned about the potential of individual antibiotic classes to fight surface-adherent bacteria in a biofilm-mode of growth.
  • Stein A, Bataille JF, Drancourt M, et al Ambulatory treatment of multi-drug resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole). Antimicrob. Agents Chemother. 42, 3086–3091 (1998).
  • Widmer AF, Wiestner A, Frei R, Zimmerli W Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob. Agents Chemother. 35, 741–746 (1991).
  • Mermel LA, Farr BM, Sherertz RJ, et al Guidelines for the management of intravascular catheter-related infections. Clin. Infect. Dis. 32, 1249–1272 (2001).
  • •These guidelines describe the state of the art therapy for one of the most important biofilm infections.
  • Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement./ Infect. Dis. 168, 400–407 (1993).
  • DesJardin JA, Falagas ME, Ruthazer R, et al Clinical utility of blood cultures drawn from indwelling central venous catheters in hospitalized patients with cancer. Ann. Intern. Med. 131, 641–647 (1999).
  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomorzas aeruginosa displays multiple phenotypes during development as a biofilm.Bacterial. 184, 1140–1154 (2002).
  • •The authors correlate different microscopic stages of biofilm development with changes in protein expression demonstrating multiple bacterial phenotypes during biofilm formation.
  • DeBeer D, Stoodley P, Lewandowski Z. liquid flow in heterogeneous biofilms. Biotechnot Bioerzg. 44, 636–641 (1994).
  • Sauer K, Camper AK Characterization ofphenotypic changes in Pseudomorzas putida in response to surface-associated growth. J. Bacterial. 183, 6579–6589 (2001).
  • Stanley NR, Britton RA, Grossman AD, Lazazzera BA. Identification of cataboliterepression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays.j Bacterial. 185, 1951–1957 (2003).
  • Whiteley M, Bangera MG, Bumgarner RE, et al Gene expression in Pseudomorzas aerugirzosa biofilms. Nature 413, 860–864 (2001).The first characterization of geneexpression in biofilms is a milestone in biofilm research.
  • Lopez-Lopez G, Pascual A, Perea EJ. Effect of plastic catheter material on bacterial adherence and viability. J. Med Microbial 34, 349–353 (1991).
  • Bisno AL, Waldvogel FA (Ed.), American Society for Microbiology Press, Washington DC, USA 1–29 (1994).
  • Shenkman B, Varon D, Tamarin I, et al Role of agr (RNAIII) in Staphylococcus aureus adherence to fibrinogen, fibronectin, platelets and endothelial cells under static and flow conditions. J. Med. Microbial 51, 747–754 (2002).
  • Hanssen AD, Rand JA, Osmon DR Treatment of the infected total knee arthroplasty with insertion of another prosthesis. The effect of antibiotic-impregnated bone cement. Clin. Orthop. 44–55 (1994).
  • Carratala J, Niubo J, Femandez-Sevilla A, et al Randomized, double-blind trial of an antibiotic-lock technique for prevention of Gram-positive central venous catheter-related infection in neutropenic patients with cancer. Antimicrob. Agents Chemother. 43, 2200–2204 (1999).
  • Raad I, Hachem R, Tcholakian RK, Sherertz R Efficacy of minocydine and EDTA lock solution in preventing catheter-related bacteremia, septic phlebitis and endocarditis in rabbits. Antimicrob. Agents Chemother. 46, 327–332 (2002).
  • Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 281, 261–267 (1999).
  • Raad I, Darouiche R, Dupuis J, et al Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann. Interrz. Med. 127,267–274 (1997).
  • Raad I, Darouiche R, Hachem R, Mansouri M, Bodey GP The broad spectrum activity and efficacy of catheters coated with minocycline and rifampin. j Infra. Dis. 173,418–424 (1996).
  • Kalmanti M, Germanakis J, Stiakaki E, et al Prophylaxis with urokinase in pediatric oncology patients with central venous catheters. Pediatr. Hematol Oncol 19, 173–179 (2002).
  • Aquino VI, Sandler ES, Mustafa MM, Steele JW, Buchanan GR A prospective double-blind randomized trial of urokinase flushes to prevent bacteremia resulting from luminal colonization of subcutaneous central venous catheters. J. Pediatr. Hematol Oncol 24,710–713 (2002).
  • Ehrlich GD, Veeh R, Wang X, et al Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287,1710–1725 (2002).
  • Nickel JC, Costerton JW Bacterial localization in antibiotic-refractory chronic bacterial prostatitis. Prostate 23,107–114 (1993).
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms.j Clin. Microbial 37, 1771–1776 (1999).
  • Joly V, Pangon B, Vallois JM, et al Value of antibiotic levels in serum and cardiac vegetations for predicting antibacterial effect of ceftriaxone in experimental Escherichia coli endocarditis. Antimicrob. Agents Chemother. 31,1632–1639 (1987).
  • Schlant RC, O'Rourke RA, Roberts R, Sonnenblick EH (Ed.), McGraw-Hill, Inc., NY, USA 1539–1545 (1994).
  • Heldman AW, Hartert TV, Ray SC, et al Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am. J. Med 101,68–76 (1996).
  • Wellman N, Fortun SM, McLeod BR Bacterial biofilms and the bioelectric effect. Antimicrob. Agents Chemother. 40, 2012–2014 (1996).
  • Leid JG, Shirtliff ME, Costerton JW Stoodley AP. Human leukocytes adhere to, penetrate and respond to Staphylococcus aureus biofilms. Infect. Immun. 70, 6339–6345 (2002).
  • Lam J, Chan R. Lam K, Costerton JW Production of mucoid microcolonies by Pseudomorzas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28, 546–556 (1980).
  • de Beer DSP Lewandowski Z. Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioerzg. 53(2), 151–158 (1997).
  • Zhu M, Takenaka S, Sato M, Hoshino F. Extracellular polysaccharides do not inhibit the reaction between Streptococcus mutans and its specific immunoglobulin G (fgG) or penetration of the IgG through S. mutans biofilm. Oral Microbial Immunol.16, 54-56(2001).
  • Lappin-Scott HM, Costerton JW (Ed.), Cambridge University Press, Cambridge, UK 233–250 (1995).
  • •Describes the deleterious effects of 'frustrated phagocytosis' on host tissue surrounding biofihns.
  • Hassett DJ, Ma JF, Elkins JG, et al Quorum sensing in Pseudomorzas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mot Microbial 34,1082–1093 (1999).
  • Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Kebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44,1818–1824 (2000).
  • •Provide an elegant technique to evaluate the antibiotic penetration trough biofilms.
  • Anwar H, Strap JL, Costerton JW. Eradication of biofilm cells of Staphylococcus aureus with tobramycin and cephalexin. C,arz. J. Microbial 38,618–625 (1992).
  • Williams I, Venables WA, Lloyd D, Paul F, ritchley I. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology143, 2407–2413 (1997).
  • Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47,1251–1256 (2003).
  • Eng RH, Padberg FT, Smith SM, Tan EN, Qierubin CE. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35,1824–1828 (1991).
  • ••Landmark paper demonstrating thatantibiotic killing greatly depends on the growth rate, which itself is regulated by nutritional resources.
  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. The rate of killing of Echerichia coli byp-lactam antibiotics is strictly proportional to the rate of bacterial growth. J. Genet. Microbial 132,1297–1304 (1986).
  • Spoering AL, Lewis K Biofilms and planktonic cells of Ilcudomonas aeruginosa have similar resistance to killing by antimicmbials.j Bacterial 183, 6746–6751 (2001).
  • Xu KD, Franklin MJ, Park CH, McFeters GA, Stewart PS. Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed 11-eudomorzas aeruginosa biofilms. FEMS Microbial Lett. 199,67–71 (2001).
  • Zheng Z, Stewart PS. Penetration ofrifampin through Staphylococcus tpidermidis biofilms. Antimicrob. Agents Chemother 46, 900–903 (2002).
  • Walters MC 3rd, Roe F, Bugnicourt A,Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation and low metabolic activity to tolerance of 11-eudomorzas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother 47,317–323 (2003).
  • Gordon CA, Hodges NA, Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived 11-eudamorzas aeruginosa.j Antimicrob. Chemother. 22, 667–674 (1988).
  • Konig C, Schwank S, Blaser J. Factors compromising antibiotic activity against biofilms of Staphylococcus epidermidis. Eur. Clin. Microbial Infect. Dis. 20,20–26 (2001).
  • SOUll M, Giamarellou H. Effects of slime produced by dinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. Antimicrob. Agents Chemother 42,939–941 (1998).
  • Durack DT, Beeson PB. Experimental bacterial endocarditis. II. Survival of a bacteria in endocardial vegetations. Br. J. Exp. Pathol 53,50–53 (1972).
  • Xu KB, Stewart PS, Xia F, Huang CT, McFeters GA. Spatial physiological heterogeneity in Pseudomorzas aeruginosa biofilm is determined by oxygen availability. AppL Environ. Microbial 64, 4035–4039 (1998).
  • Stewart PS, Griebe T, Srinivasan R, et al Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms. Appl. Environ. Microbial. 60,1690–1692 (1994).
  • Mason DJ, Power EG, Talsania H, Phillips I, Gant VA. Antibacterial action of ciprofloxacin. Antimicrob. Agents Chemother. 39, 2752–2758 (1995)•
  • Zambrano MM, Kolter R GASPing for life in stationaty phase. Cell 86, 181–184(1996).
  • T 27277e1a BA Quorum sensing and starvation: signals for entry into stationaty phase. Curr. Opirz. Mcrobiol. 3, 177–182 (2000).
  • •It is su ested that quorum-sensing and starvation-sensing pathways closely interact to regulate cell entry into the less susceptible stationary phase.
  • Nystrom T Aging in bacteria. Curr. Opin. Microbial 5, 596–601 (2002).
  • Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743 (2002).
  • Novick RP Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mot Microbial. 48, 1429–1449 (2003).
  • Testerman TL, Vazquez-Torres A, Xu y Jones-Carson J, Libby SJ, Fang FC The alternative sigma actor sigmaE controls anti-oxidant defences required for Salmonella virulence and stationary-phase survival. 11/1)L Microbial 43, 771-782(2002).
  • Bateman BT, Donegan NP, Jarry TM, Palma M, Cheung AL. Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. Infect. Immun. 69, 7851–7857 (2001).
  • Foley I, Marsh I, Wellington EM, Smith AW, Brown MR. General stress response master regulator rpoS is expressed in human infection: a possible role in chronicity j Antimicrob. Chemother. 43, 164–165 (1999).
  • Schembri MA, laergaatd K Klemm P Global gene expression in Echerichia coli biofilms. Mal Microbial 48, 253–67 (2003).
  • Heydom A, Ersboll B, Kato J, et al Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling and stationaty-phase sigma factor expression. Appl Erzviro,z. Microbial 68, 2008–2017(2002).
  • Massey RC, Buckling A, Peacock SJ. Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Curr. Biol. 11, 1810–1814 (2001).
  • Lewis K Programmed death in bacteria. Microbial Mot Biol. Rev. 64, 503–514 (2000).
  • Lewis K Riddle of biofilm resistance.Antimicrob. Agents Chemother. 45, 999–1007 (2001).
  • •Provides the interesting hypothesis that antimicrobial resistance in both biofilms and stationary growth phase depends on a subpopulation of `persister cells' and discusses possible mechanisms.
  • Cochran WL, McFeters GA, Stewart PS. Reduced susceptibility of thin Reudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. j Appl. Microbial 88, 22–30 (2000).
  • Das JR, Bhakoo M, Jones MV, Gilbert P Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces. J. Appl. Microbial. 84, 852–858 (1998).
  • Camara M, Williams 1 Hardman A Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect. Dis. 2, 667–676 (2002).
  • ••Excellent review of quorum-sensingmechanisms in Gram-positive, Gram-negative and mixed-species environments with a focus on possible new therapeutic targets.
  • Purevdorj B, Costerton JW, Stoodley Influence of hydrodynamics and cell signaling on the structure and behavior of Reudomonas aeruginosa biofilms. Appl Environ. Microbial 68,4457–4464 (2002).
  • ••The ability of cell signaling mutants toform biofihns in high shear flow demonstrates that biofihn formation is a multifactorial process regulated by both genetics and environmental growth conditions.
  • Bollinger N, Hassett DJ, Iglewski BH, Costerton JW, McDermott TR. Gene expression in 13-eudamonas aerugirzosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. j Bacterial. 183, 1990–1996(2001).
  • De Kievit TR, Gillis R, Marx S, Brown C,Iglewski BH. Quorum-sensing genes in Reudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbial 67, 1865–1873 (2001).
  • Blevins JS, Beenken KE, Elasri MO, Hurlburt BK, Smeltzer MS. Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect. Immun. 70, 470–480 (2002).
  • Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mot Microbial. 48, 1075–1087 (2003).
  • Vuong C, Saenz HL, Gotz F, Otto M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. j Infect. Dis. 182, 1688–1693(2000).
  • Li YH, Tang N, Aspiras MB, Lau PC, LeeJH, Ellen RP, Cvitkovitch DG. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation./ Bacterial 184,2699–2708 (2002).
  • Balaban N, Gov Y, Bitkr A, Boelaert JR Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney Int. 63, 340–345 (2003).
  • Giacometti A0, Gov Y, Cirioni , et al . G. RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 1979–1983 (2003).
  • Balaban N, Giacometti A, Cirioni O, et al Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. j Infect. Dis. 187, 625–630 (2003).
  • •One of several papers describing the effect of the currently most promising signaling-inhibitory molecule, the RNA-III inhibitory peptide RIP.
  • Stickler DJ, Morris NS, McLean RJ, Fuqua C. Biofilms on indwelling urethral catheters produc e quorum-sensing signal molecules in situ and in vitro. Appl. Environ. Microbial 64, 3486–3490 (1998).
  • Erickson DL, Endersby R, KlikharnA, et al Reudamonas aerugirzosa quorum-sensing systems may control vitulence fluor expression in the lungs of patients with cystic fibrosis. Infict. Immun. 70, 1783–1790(2002).
  • •One of very few papers that demonstrate the role of cell—cell signaling in human biofilm infections in vivo.
  • Shih PC, Huang CT. Effects of quorum-sensing deficiency on Reudomonas aeruginosa biofilm formation and antibiotic resistance./ Antimicrob. Chemother 49, 309–314 (2002).
  • Yoon SS, Hennigan RF, Hilliard GM, et al Reudamonas aerugirzosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell 3, 593–603 (2002).
  • Pesci EC, Milbank JB, Pearson JP, et al Quinolone signaling in the cell-to-cell communication system of /1-eudomonas aeruginosa. Proc. Natl Acad Sci. USA 96, 11229–11234 (1999).
  • You Z, Fukushima J, Tanaka K, Kawamoto S, Okuda K Induction of entry into the stationary growth phase in Reudomonas aeruginosa by N-acylhomoserine lactone. FEMS Microbial Lett. 164, 99–106 (1998).
  • Thorne SH, Williams HD. Cell density-dependent starvation survival of Rhizobium leguminosarum by. phaseoli: identification of the role of an N-acyl homoserine lactone in adaptation to stationaty-phase survival. J. Bacterial 181,981–990 (1999).
  • Smith RS, Iglewski BH. I? aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbial 6,56–60 (2003).
  • Schuster M, Lostroh CI, Ogi T, Greenberg EP Identification, timing and signal specificity of /1-eudomonas aeruginosa quorum-controlled genes: a transcriptome analysis./ Bacterial 185,2066–2079(2003).
  • •Demonstrate that signal accumulation at a critical population density is not sufficient to activate quorum-controlled genes. The complex regulatory system includes growth phase and environmental factors.
  • Wagner VE, Bushnell D, Passador L, Brooks Al, Iglewski BH. Microarray analysis of /1-eudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment.j Bacterial 185, 2080–2095 (2003).
  • •Demonstrate that signal accumulation at a critical population density is not sufficient to activate quorum-controlled genes. The complex regulatory system includes growth phase and environmentalfactors. This study further demonstrates the impact of environmental factors as medium composition and oxygen availability on quorum sensing
  • Vasil ML. DNA microarrays in analysis of quorum sensing: strengths and limitations. J. Bacterial 185,2061–2065 (2003).
  • Reimmann C, Ginet N, Michel L, et al Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomorzas aeruginosa PA01. Microbiology 148,923–932 (2002).
  • Givskov M, de Nys R. Manefield M, et al Eukatyotic interference with homoserine lactone-mediated prokatyotic signalling. J. Bacterial 178,6618–6622 (1996).
  • Hentzer M, Riedel K, Rasmussen TB, et al Inhibition of quorum sensing in Pseudomorzas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148,87–102 (2002).
  • Ren D, Sims JJ, Wood TK Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(514)-furanone. Lett. Appl Microbial 34,293–299(2002).
  • Hentzer M, Wu H, Andersen JB, et al Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO/ 22,3803–3815 (2003).
  • Bassler BL, Wright M, Showalter RE, Silverman MR Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mal MicrobioL.9, 773-786(1993).
  • McNab RSK El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ. Ford. T mcS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivali.c.j Bacterial 185,274–284 (2003).
  • Merritt J, Qi F, Goodman SD, Anderson MH, Shi W. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun. 71, 1972-1979 (2003).
  • Wen ZT, Bume RA. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbial 68, 1196–1203 (2002).
  • Winzer K, Hardie KR, Williams P Bacterial cell-to-cell communication: sorry, can't talk now — gone to lunch! Curr. Opin. MicrobioL. 5,216–222 (2002).
  • Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Arztimicrob. Agents Chemother. 33,1824–1826 (1989).
  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz E The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation.Immun. 67,5427–5433 (1999).
  • Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun. 67,2627-2632 (1999)•
  • ••Documents the importance of the ica-genecluster encoding PIA for biofilm production in the pathogenesis of S. epidermidis foreign body infections.
  • Ziebuhr W, Hellmann C, Gotz F, et al Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65,890–896 (1997).
  • de Silva GD, Kantzanou M, Justice A, et al The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J. Clin. Microbial 40, 382–388 (2002).
  • Knobloch JK, Horstkotte MA, Rohde H, Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med Microbial Immunol (Berl). 191,101-106 (2002).
  • Dobinsky S, Mel K, Rohde H, et al Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermic& evidence for an additional factor required for polysaccharide intercellular adhesin spthesis. j Bacterial 185,2879–2886 (2003).
  • •Underscores that the presence of a `biofilm gene' does not necessarily lead to a biofihn-positive phenotype but that gene expression crucially depends on growth conditions.
  • Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Arztimicrob. Agents Chemother. 44, 3357–3363 (2000).
  • Ziebuhr W, Krimmer V, Rachid S, Lessner Gotz F, Hacker J. A novel mechanism of phase variation of virulence in Staphylococcus epidermic& evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. 11/kL Microbial. 32,345-356 (1999).
  • •With this study, phase variation is introduced as a regulatory factor in biofdm formation.
  • Conlon KM, Humphreys H, O'Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacterial 184, 4400–4408 (2002).
  • Francois P Tu Quoc PH, Bisognano C, et al Lack of biofilm contribution to bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immurzol Med. Microbial 35, 135–140 (2003).
  • Becker P Hufilagle W, Peters G, Herrmann M. Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ. Microbial 67,2958–2965(2001).
  • Finelli A, Gallant CM, Jarvi K, Burrows LL. Use of in-biofilm expression technology to identify genes involved in Pseudomorzas aeruginosa biofilm development./ Bacterial. 185,2700–2710 (2003).
  • Prigent-Combaret C, Dorel C, Vidal , Lejeune P Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacterial 181, 5993–6002(1999).
  • Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework Microbiology 147,3–9 (2001).
  • Durack DT. Experimental bacterial endocarditis. IV Structure and evolution of very early lesions./ Pathol 115,81–89 (1975).
  • Wozniak DJ, Wyckoff TJ, Starkey M, et al Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PA01 Pseudomorzas aeruginosa biofilms. Proc. Nad Acad. Sci. USA 100, 7907–7912 (2003).
  • Zielinski NA, Maharaj R, Roychoudhury S, Danganan CE, Hendrickson W Chakrabarty AM. Alginate synthesis in 11-eudamorzas aeruginosa: environmental regulation of the algC promoter. J. Bacterial. 174,7680–7688 (1992).
  • Nivens DE, Ohman DE, Williams J, Franklin MJ. Role of alginate and its 0 acetylation in formation of Pseudomorzas aeruginosa microcolonies and biofilms. Bacterial 183,1047–1057 (2001).
  • Nguyen T, Louie SG, Beringer PM, Gill MA. Potential role of macrolide antibiotics in the management of cystic fibrosis lung disease. Curr. Opin. Pulm. Med. 8,521–528 (2002).
  • •The therapeutic efficacy of darithromydn against P aeruginosa biofilms demonstrates that not only direct killing of bacteria but the destruction of biofihn-specific targets as the extracellular polymeric slime promotes biofihn clearance.
  • Mitsuya Y, Kawai S, Kobayashi H. Influence of macrolides on guanosine diphospho-D-mannose dehydrogenase activity in Pseudomonas biofilm. J. Infect. Chemother. 6,45–50 (2000).
  • Sari OM, Hirose T, Nishimura M, Takahashi S, Matsukawa M, Tsukamoto T Inhibitory action of clarithromycin on glycocalyx produced by MRSA. j Infect. Chemother. 5,10–15 (1999).
  • Yamasaki O, Akiyama H, Toi Y, Arata J. A combination of roxitfuomycin and imipenem as an antimicrobial strategy against biofilms formed by Staphylococcus aureus. j Antimicrob. Chemother. 48, 573–577 (2001).
  • Huang CT, Stewart PS. Reduction of polysaccharide production in 11-eudamorzas aeruginosa biofilms by bismuth dimercaprol (BisBAL) treatment. J. Antimicrob. Chemother. 44,601–5 (1999).
  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 295,1487 (2002).
  • Hook EW 3rd, Sande MA. Role of the vegetation in experimental Streptococcus viridans endocarditis. Infect. Immun. 10, 1433–1438 (1974).
  • Kupferwasser LI, Yeaman MR, Shapiro SM, et al Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 99, 2791–2797 (1999).
  • Isberg RR, Barnes P. Dancing with the host; flow-dependent bacterial adhesion. Cell 110,1–4 (2002).
  • Stoodley P, Cargo R, Rupp g, Wilson S, 'Capper I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbial Biotechnot 29,361–367 (2002).
  • Wilson JW, Ott CM, Ramamurthy R, et al Low-Shear modeled microgravity alters the Salmonella erzterica serovar typhimurium stress response in an RpoS-independent manner. Appl Environ Microbial. 68, 5408–5416 (2002).
  • Koerner RJ. Contribution of endotracheal tubes to the pathogenesis of ventilator-associated pneumonia. J. Hosp. Infra. 35, 83–89 (1997).
  • Stoodley P Hall-Stoodley L, Lappin-Scott HM. Detachment, surface migration and other dynamic behavior in bacterial biofilms revealed by digital time-lapse imaging. Meth. Erzzymol. 337,306–319 (2001).
  • Inglis TJ. Evidence for dynamic phenomena in residual tracheal tube biofilm. Br J Anaesth. 70,22–24 (1993).
  • Liu Y, Tay JH. Metabolic response of biofilm to shear stress in fixed-film culture. Appl Microbial 90,337–342 (2001).
  • Peyton B. Effects of shear-stress and substrate loading rate on Pseudomorzas aeruginosa biofilm thickness and density. Water Res. 30,29–36 (1996).
  • Allison D, Lappin-Scott HM and Wilson M (Ed.), Cambridge Uni. Press, Cambridge, UK 87–105 (2000).
  • Stoodley PS, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW. Wilson. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl. Environ. Microbial. 67, 5608–5613 (2001).
  • Characklis WG, Marshall DC (Ed.), John Wiley Hc Sons, NY, USA 195-232(1990).
  • Daly B, Betts WB, Brown AP O'Neill JG. Bacterial loss from biofilms exposed to free chlorine. Microbios 96,7–21 (1998).
  • Boyd A, Chakrabarty AM. Role of alginate lyase in cell detachment of Pseudomorzas aeruginosa. Appl Environ. Microbial 60, 2355–2359 (1994).
  • Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect. Immun. 64,1035–1038 (1996).
  • Allison DG, Ruiz B, SanJose C, Jaspe A, Gilbert P. Extracellular products as mediators of the formation and detachment of /1-eudomonas fluorescens biofilms. FEMS Microbial Lett. 167,179–184 (1998).
  • Webb JS, Thompson LS, James S, et al Cell death in Reudamonas aerugirzosa biofilm development. Bacterial 185,4585–4592 (2003).
  • Xiong YQ Van Wamel W, Nast CC, Yeaman MR, Cheung AL, Bayer AS. Activation, and transcriptional interaction between agr RNAII and RNAIII in Staphylococcus aureus in vitro and in an experimental endocarditis model./ Infect. Dis. 186,668–677 (2002).
  • Beenken KE, Blevins JS, Smeltzer MS. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect. Immun. 71, 4206–4211(2003).

Website

  • www.erc.montana.edu/Res-Lib99-SW/Movies/2003/03-M003_4.htm Accessed November 2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.