59
Views
36
CrossRef citations to date
0
Altmetric
Review

Can virulence factors be viable antibacterial targets?

Pages 61-72 | Published online: 10 Jan 2014

References

  • Cazzola M, Matera MG, Page CP. Novelapproaches to the treatment of pneumonia. Trends Phannacol. Sc]. 24(6), 306–314 (2003).
  • Projan SJ. New (and not so new) antibacterial targets-from where and when will the novel drugs come? Carr. Opin. Phannacol. 2,513–522 (2002).
  • ••Excellent analysis of the current state of antibacterials and where to go from here.
  • Aballay A, Ausubel FM. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Carr. Opin. Microbiol. 5, 97–101 (2002).
  • Dionne MS, Ghori N, Schneider DS. Drosophila rnelanogaster is a genetically tractable model host for Mycobacterium marinum Infect. II77177111771 (6), 3540–3550 (2003).
  • d'Argenio DA, Gallagher LA, Berg CA, Manoil C. Drosophila as a model host for Pseudornonas aeruginosa infection. J. Bacteriology 183(4), 1466–1471 (2001).
  • Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudornonas aeruginosa mutants in mice and insects. J. Bacteriol. 182 (13), 3843–3845 (2000).
  • Kaito C, Akimitsu N, Watanabe H, Sekimizu K. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb. Pathog. 32(4), 183–190 (2002).
  • Mahajan-Miklos S, Rahme LG, Ausubel FM. Elucidating the molecular mechanisms of bacterial virulence using nonmammalian hosts. Mol. Microbiol. 37(5), 981–988 (2000).
  • •• This review details the multihost pathogenesis model for I? aeruginosa.
  • Kurz CL, Chauvet S, Andres E, et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivoscreening. EMBO J. 22(7), 1451–1460 (2003).
  • Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram-positive virulence factors. Proc. Natl Acad. Sd. 98(19), 10892–10897 (2001).
  • Sifri CD, Begun J, Ausubel FM, Calderwood SB. Caenorhabditis elegans as a model host for Staphylococcus aumus pathogenesis. Infect. II77177111771(4), 2208–2217 (2003).
  • Alegado RA, Campbell MC, Chen WC, Stutz SS, Tan M-W Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host—pathogen model. Cell. Microbiol. 5(7), 435–444 (2003).
  • Lemaitre B, Reichhart J-M, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Nat/Acad. Sd. 94, 14614–14619 (1997).
  • Tzou P, de Gregorio E, Lemaitre B. How Drosophila combats microbial infection: a model to study innate immunity and host—pathogen interactions. Cum: Opin. Microbiol. 5,102–110 (2002).
  • Kurz CL, Ewbank JJ. Caenorhabditis elegans an emerging genetic model for the study of innate immunity. Nature Rev Genet. 4, 380–390 (2003).
  • Leulier F, Parquet C, Phi-Floury S, et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature II7717711170L 4(5), 478–484 (2003).
  • Buer J, Balling R. Mice, microbes and models of infection. Nature Rev Genet. 4,195–205 (2003).
  • Opperman T, Ling LL, Moir DT Microbial pathogen genomes — new strategies for identifying therapeutic and vaccine targets. Expert Opin. Ther. Targets7 (4), 469–473 (2003).
  • Hensel M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269,400–403 (1995).
  • Perry RD. Signature-tagged mutagenesis and the hunt for virulence factors. Trends Microbiol. 7(10), 385–388 (1999).
  • Shea JE, Santagelo JD, Feldman RG. Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr. Opin. Microbiol. 3,451–458 (2000).
  • Lehoux DE, Levesque RC. Detection of genes essential in specific niches by signature-tagged mutagenesis. Cum: Opin. BiotechnoL 11, 434–439 (2000).
  • Chiang SL, Mekalanos JJ, Holden DVV. In vivo genetic analysis of bacterial virulence. Ann. Rev Microbiol. 53,129–154 (1999).
  • •Good review of WET and STM to understand host—pathogen interactions.
  • Polissi A, Pontiggia A, Feger G, et al. Large-scale identification of virulence genes from Streptococcus pneurnoniae. Infect. Immun 66(12), 5620–5629 (1998).
  • Lau GVV, Haataja S, Lonetto M, et al. A functional genomic analysis of Type 3 Streptococcus pneurnoniae virulence. Mol. Microbiol. 40(3), 555–571 (2001).
  • Hava DL, Camilli A. large-scale identification of serotype 4 Streptococcus pneurnoniae virulence factors. Mol. MicrobioL 45(5), 1389–1405 (2002).
  • Mecsas J. Use of signature-tagged mutagenesis in pathogenesis studies. Cum: Opin. Microbiol. 5,33–37 (2002).
  • Coulter SN, Schwan WR, Ng EY, et al. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. NlicrobioL 30(2), 393–404 (1998).
  • Angelichio MJ, Camilli A. in vivo expression technology. Infect. 11771771117.. 70 (12), 6518–6523 (2002).
  • Rankin S, Isberg R. Identification of Legionella pneurnophila promoters regulated by the macrophage intracellular environment. Infect. Agents Dis. 2(4), 269–271 (1993).
  • Rankin S, Li Z, Isberg RR. Macrophage-induced genes of Legionella pneurnophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect. Irnmun 70 (7), 3637–3648 (2002).
  • Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259,686–688 (1993).
  • Mahan MJ, Tobias JW, Slauch JM, Hanna PC, Collier RJ. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl Acad. Sc]. 92,669–673 (1995).
  • Kiliç A, Herzberg M, Meyer M, Zhao Z, Tao L. Streptococcal reporter gene-fusion vector for identification of in vivo expressed genes. Plasrnid 42(1), 67–72 (1999).
  • Camilli A, Beattie DT, Mekalanos JJ. Use of genetic recombination as a reporter of gene expression. Proc. Natl Acad. Sc]. 91, 2634–2638 (1994).
  • Camilli A, Mekalanos J. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18,671–683 (1995).
  • Lee S, Butler S, Camilli A. Selection for in vivo regulators of bacterial virulence. Proc. Natl Acad. Sc]. 98(12), 6889–6894 (2001).
  • •Describes the use of RIVET to identify positive regulators of virulence genes during an actual infection.
  • Marra A, Asundi J, Bartilson M, et al. Differential fluorescence induction analysis of Streptococcus pneurnoniae identifies genes involved in pathogenesis. Infect. Immun 70 (3), 1422–1433 (2002).
  • Badger J, Wass C, Kim K. Identification of Escherichia coil K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol. Microbiol. 36(1), 174–182 (2000).
  • Schneider WP, Ho SK, Christine J, et al. Virulence gene indentification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect. Immun 70(3), 1326–1333 (2002).
  • Valdivia RH, Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhinturium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22 (2), 367–378 (1996).
  • Mason KM, Munson RS, Jr., Bakaletz LO. Nontypeable Haernophilus influenzae gene expression induced in vivo in a chinchilla model of otitis media. Infect. Irnmun 71(6), 3454–3462 (2003).
  • Cummings CA, Relman DA. Using DNA microarrays to study host—microbe interactions. Erner. Infect. Dis. 6(5), 513–525 (2000).
  • Kato-Maeda M, Gao Q, Small PM. Microarray analyis of pathogens and their interactions with hosts. Cell. Microbiol. 3(11), 713–719 (2001).
  • Haney SA, Alksne LE, Dunman PM, Murphy E, Projan SJ. Genomics in anti-infective drug discovery — getting to endgame. Carr. Pharmaceutical Design 8, 1099–1118 (2002).
  • Sassetti C, Rubin EJ. Genomic analyses of microbial virulence. Cum Opin. Microbiol. 5, 27–32 (2002).
  • Deb DK, Dahiya P, Srivastava KK, Srivastava R, Srivastava BS. Selective identification of new therpeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis (Edirrb) 82 (4–5), 175–82 (2002).
  • Kim YR, Lee SE, Kim CM, et al. Characterization and pathogenic significance of Vibrio vulnifkus antigens preferentially expressed in septicemic patients. Infect. 1177177111771(10), 5461–5471 (2003).
  • Etz H, Minh DB, Henics T, et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Scir. 99(10), 6573–6578 (2002).
  • Hang L, John M, Asaduzzaman M, et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl Acad. Scir. 100(14), 8508–8513 (2003).
  • Wizemann TM, Heinrichs JH, Adamou JE, et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneurnoniae. Infect. II77177111769 (3), 1593–1598 (2001).
  • Li Y, Frey E, Mackenzie AMR, Finlay BB. Human response to Ercherichia co/i0157:H7 infection: antibodies to secreted virulence factors. Infect. Irnrnun 68(9), 5090–5095 (2000).
  • Kernodle DS, Voladri RKR, Menzies BE, Hager CC, Edwards KM. Expresison of antisense hla fragment in Staphylococcus aumus reduces alpha-toxin production in vitro and attentuates lethal activity in a murine model. Infect. II77177111765(1), 179–184 (1997).
  • •First report on the use of antisense to modulate gene activity in vivo.
  • Ji Y, Marra A, Rosenberg M, Woodnutt G. Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aumus infection. J. BacterioL 181 (21), 6585–6590 (1999).
  • Ji Y, Zhang B, Van Horn SF, et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266–2269 (2001).
  • Macielag M, Goldschmidt R. Inhibitors of bacterial two-component signalling systems. Expert Opin. Invest. Drugs 9(10), 2351–2369 (2000).
  • Barrett JF, Goldschmidt RM, Lawrence LE, et al. Antibacterial agents that inhibit two-component signal transduction systems. Proc. Natl Acad. Sci. 95, 5317–5322 (1998).
  • Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antirnicrob. Agents Chernother. 42(7), 1529–1536 (1998).
  • ••This article puts forth sound arguments fortargeting TCSTSs.
  • Wallis NG. Bacterial two-component signal transduction systems as drug targets. Carr. Opin. Anti-infect. Invest. Drugsl (4), 428–434 (1999).
  • ••Discusses the arguments for targetingTCSTSs.
  • Stephenson K, Hoch JA. Virulence-and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. PharrnacoL Ther. 93, 293–305 (2002).
  • Throup JP, Koretke KK, Bryant AP, et al. A genomic analysis of two-component signal transduction in Streptococcus pneurnoniae. Mol. Microbiol. 35(3), 566–576 (2000).
  • Blue CE, Mitchell TJ. Contribution of a response regulator to the virulence of Streptococcus pneurnoniae is strain dependent. Infect. Irnmun 71(8), 4405–4413 (2003).
  • Panthel K, Dietz P, Haas R, Beier D. Two-component systems of Helicobacter pylori contribute to virulence in a mouse infection model. Infect. Irnmun 71 (9), 5381–5385 (2003).
  • Kreikemeyer B, McIver KS, Podbielski A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen—host interactions. Trends Microbiol. 11(5), 224–232 (2003).
  • Parish T, Smith DA, Kendall S, et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Irnmun 71(3), 1134–1140 (2003).
  • Hueck C. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).
  • Muller S, Feldman MF, Cornelis GR. The Type III secretion system of Gram-negative bacteria: a potential therapeutic target. Expert Opin. Ther. Targets 5(3), 327–339 (2001).
  • Winstanley C, Hart CA. Type III secretion systems and pathogenicity islands. J. Med. Microbiol. 50, 116–126 (2001).
  • Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. Use of the Galleria rnellonella caterpillar as a model host to study the role of the Type III secretion system in Pseudornonas aeruginosa pathogenesis. Infect. Irnmun 71 (5), 2402–2413 (2003).
  • Kauppi AM, Nordfelth R, Uvell H, Wolf-Watz H, Elofsson M. Targeting bacterial virulence: inhibitors of Type III secretion in Yersinia. Chem. Biol. 10, 241–249 (2003).
  • Donlan R, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Can. Microbiol. Rev. 15(2), 167–193 (2002).
  • •Centers on the importance of biofilms in human disease.
  • Dunne WM Jr. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15(2), 155–166 (2002).
  • Costerton JVV, Stewart PS, Greenberg EE Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).
  • Ehrlich GD, Veeh R, Wang X, et al. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. jAm. Med. Assoc. 287(13), 1710–1715 (2002).
  • Davies D. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery 2, 114–122 (2003).
  • Leid JG, Shirtliff ME, Costerton JVV, Stoodley E Human leukocytes adhere to, penetrate and respond to Staphylococcus aumus biofilms. Infect. Irnmun 70 (11), 6339–6345 (2002).
  • Murphy TF, Kirkham C. Biofilm formation by nontypeable Haernophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC MicrobioL 2, 7–15 (2002).
  • Schembri MA, Kjaergaard K, Klemm E Global gene expression in Escherichia coil biofilms. Mol. Microbiol. 48(1), 253–267 (2003).
  • Hentzer M, Ebert L, Nielsen J, Givskov M. Quorum sensing: a novel target for the treatment of biofilm infections. Biodrugs 17(4), 241–250 (2003).
  • Camara M, Williams P, Hardman A. Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Inlèct.Dis. 2, 667–676 (2002).
  • Wu H, Song Z, Hentzer M, et al. Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudornonas aeruginosa. Microbiol. 146, 2481–2493 (2000).
  • Ward C, Camara M, Forrest I, et al. Preliminary findings of quorum signal molecules in clinically stable lung allograft recipients. Thorax 58, 444–446 (2003).
  • Hentzer M, Riedel K, Rasmussen TB, et al. Inhibition of quorum sensing in Pseudornonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbia 148, 87–102 (2002).
  • Hentzer M, Wu H, Anderson JB, et al. Attentuation of Pseudornonas aeruginosa virulence by quorum sensing inhibitors. EMBO 22(15), 3803–3815 (2003).
  • Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Bacteria 179(12), 4043–4045 (1997).
  • Ji G, Beavis RC, Novick RE Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030 (1997).
  • Balaban N, Goldkorn T, Nhan RT, et al. Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus Science 280, 438–440 (1998).
  • Hartman G, Wise R. Quorum sensing: potential means of treating Gram-negative infections? Lancet 351, 848–849 (1998).
  • Bauer WB, Robinson JB. Disruption of bacterial quorum sensing by other organisms. Curr. Opin. Biotech. 13(3), 234–237 (2002).
  • Balaban N, Giacometti A, Cirioni O, et al. Use of the quroum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epiderrnidis.. 1. Infect. Dis. 187, 625–630 (2003).
  • Dong Y-H, Wang L-H, Xu J-L, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001).
  • Finch RG, Pritchard DI, Bycroft BW, Williams E Stewart GSAB. Quorum sensing: a novel target for anti-infective therapy.. 1. Antirnicrob. Chernother. 42, 569–571 (1998).
  • Winzer K, Williams P Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int.. 1. Med. Microbiol. 291, 131–143 (2001).
  • Williams P Quorum sensing: an emerging target for antibacterial chemotherapy? Expert Opin. Ther. Targets 6(3), 257–274 (2002).
  • Kohler T, Van Delden C, Curty LK, Hamzehpour MM, Pechere J-C. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signalling in Pseudornonas aeruginosa. Bacteria 183(18), 5213–5222 (2001).
  • Sanchez P, Linares JF, Ruiz-Diez B, et al. Fitness of in vitro selected Pseudornonas aeruginosa nalBand nbrBmultidrug resistant mutants.. 1. Antirnicrob. Chernother. 50, 657–664 (2002).
  • Hirakata Y, Srikumar R, Poole K, et al. Multidrug efflux systems play an important role in the invasiveness of Pseudornonas aeruginosa. Exp. Med. 196(1), 109–118 (2002).
  • Rahmati S, Yang S, Davidson AL, Zechiedrich EL. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol. Microbia 43(3), 677–685 (2002).
  • Smith JN, Ahmer BMM. Detection of other microbial species by Sa/monella: expression of the SdiA regulon. j Bacteriol. 185(4), 1357–1366 (2003).
  • Chang S, Sievert DM, Hageman JC, et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl.. 1. Med. 348 (14), 1342–1347 (2003).
  • Goldschmidt R, Macielag M, Hlasta D, Barrett J. Inhibition of virulence factors in bacteria. Carr. Pharrn. Design 3 125–142 (1997).
  • •• This review presents thorough pros and cons of using bacterial virulence factors as appropriate targets for antibacterial therapy.
  • Alksne LE. Virulence as a target for antimicrobial chemotherapy. Expert Opin. Invest. Drugsll (8), 1149–1159 (2002).
  • ••Presenting the pros and cons of usingbacterial virulence factors as appropriate targets for antibacterial therapy.
  • Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nature Reviews Drug Discoveryl, 895–910 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.