41
Views
9
CrossRef citations to date
0
Altmetric
Review

Global dissemination of β2-lactamases mediating resistance to cephalosporins and carbapenems

Pages 317-327 | Published online: 10 Jan 2014

References

  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for 13-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39,1211–1233 (1995).
  • •Functional classification scheme.
  • Livermore DM. B-lactamases in laboratory and clinical resistance. Clin. Microbial Rev. 8,557–584 (1995).
  • Medeiros AA. Evolution and dissemination of B-lactamases accelerated by generations of B-lactam antibiotics. Clin. Infect. Dis. 24\(Suppl. 1), S19—S45 (1997).
  • Bradford PA. Extended-spectrum 13-lactamases in the 21st century: characterization, epidemiology and detection of this important resistance threat. Clin. Microbial. Revs. 14,933–951 (2001).
  • ••Excellent review of ESPLs.
  • Philippon, A, Arlet, G, Jacoby, GA. Plasmid-determined ampC-type 13-lactamases. Antimicrob. Agents Chemother. 46,1–11 (2002).
  • •• Excellent reference for plasmid-encoded ampC genes.
  • Richmond MH, Sykes RB. The 13-lactamases of Gram-negative bacteria and their possible physiological role. Adv. Microb. Physiol. 9,31–88 (1973).
  • Ambler RP. The structure of 13-lactamases. Phil. Trans. R. Soc. Land. Biol. 289,321–331 (1980).
  • ••Classic Ambler scheme paper.
  • Bush K. New B-lactamases in Gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis. 32,1085–1089 (2001).
  • Knox JR. Extended-spectrum and inhibitor-resistant TEM-type 13-lactamases: mutations, specificity and three-dimensional structure. Antimicrob. Agents Chemother. 39,2593–2601 (1995).
  • Massova I, Mobashery S. Molecular basis for interactions between B-lactam antibitotics and B-lactamases. Acc. Chem. Res. 30,162–168 (1997).
  • Bulchey A, Massova I, Miyashita K, Mobashery S. Nuances of mechanisms and their implications for evolution of the versatile B-lactamase activity: from biosynthetic enzymes to drug resistance factors. J. Am. Chem. Soc. 119, 7619–7625 (1997).
  • Maveyraud L, Mourey L, Kotra L, et al. Structural basis for clinical longevity of carbapenem antibiotics in the face of challenge by the common class A 13-lactamases from antibiotic-resistant bacteria. J. Am. Chem. Soc. 120, 9748–9752 (1998).
  • •• Excellent paper describing the catalysis of carbapenems at the active site of TEM.
  • Taibi-Tronche P, Massova I, Vakulenko S, Lerner SA, Mobashery S. Evidence for structural elasticity of class A 13-lactamases in the course of catalytic turnover of the novel cephalosporin cefepime. J. Am. Chem. Soc. 118, 7441–7448 (1996).
  • Nukaga M, Mayama K, Crichlow GV, Knox JR. Structure of an extended-spectrum class A B-lactamase from Proteus vulgaris Kl. Mal Biol. 317, 109–117 (2002).
  • Rasmussen BA, Bush K. Carbapenem-hydrolyzing B-lactamases. Antimicrob. Agents Chemother. 41,223–232 (1997).
  • Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbial Infect. 8, 321–331 (2002).
  • Pottumarthy S, Smith Moland E, Juretschko S, Swanzy SR, Thomson KS, Fritsche, TR. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emer. Infect. Dis. 9,999–1002 (2003).
  • Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing 13-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45, 1151–1161 (2001).
  • Majiduddin FK, Palzkill T Amino acid sequence requirements at residues 69 and 238 for the SME-1 B-lactamase to confer resistance to B-lactam antibiotics. Antimicrob. Agents Chemother. 47, 1062–1067 (2003).
  • Hernandez-Alles S, Alberti S, Alvarez D, et al. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology 145,673–679 (1999).
  • ••Excellent source paper for porins ofK pneumoniae.
  • Miriagou V, Tzouvelekis LS, Rossiter S, Tzelepi E, Angulo FJ, Whichard JM.Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother. 47, 1297–1300 (2003).
  • Lartigue MF, Leflon-Guibout V, Poirel L, Nordmann P, Nicolas-Chanoine M-H. Promoters P3, Pa/Pb, P4 and P3 upstream from b/aTEm genes and their relationship to B-lactam resistance. Antimicrob. Agents Chemother. 46, 4035–4037 (2002).
  • Livermore DM. Acquired carbapenemases. J. Antimicrob. Chemother. 39, 673–676 (1997).
  • Hirakata Y, Yamaguchi T, Nakano M, et al. Clinical and bacteriological characteristics of IMP-type metallo-B-lactamase-producing Pseudomonas aeruginosa. Clin. Infect. Dis. 37, 26–32 (2003).
  • Yum JH, Yi K, Lee H, et al. Molecular characterization of metallo-B-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the b/avim2 gene cassettes. J. Antimicrob. Chemother. 49, 837–840 (2002).
  • Yan J-J, Ko W-C, Chuang C-L, Wu J-J. Metallo-B-lactamase-producing enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J. Antimicrob. Chemother. 50, 503–511 (2002).
  • Pallecchi L, Ricci° ML, Docquier J-D, Fontana R, Rossolini GM. Molecular heterogeneity of b/awm_2-containing integrons from Pseudomonas aeruginosa plasmids encoding the VIM-2 metallo-B-lactamase. FEMS Microbial. Lett. 195, 145–150 (2001).
  • Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr. Opin. Microbial. 3, 489–495 (2000).
  • Beadle BM, Shoichet BK. Structural basis for imipenem inhibition of class C B-lactamases. Antimicrob. Agents Chemother. 46, 3978–3980 (2002).
  • Vakulenko SB, Golemi D, Geryk B, et al Mutational replacement of leu-293 in the class C Enterobacter cloacae P99 B-lactamase confers increased MIC of cefepime. Antimicrob. Agents Chemother. 46, 1966–1970 (2002).
  • ••Interesting paper demonstrating the effectof a single amino acid replacement on substrate utilization.
  • Crichlow GV, Nukaga M, Doppalapudi VR, Buynak FD, Knox JR. Inhibition of class C B-lactamases: structure of a reaction intermediate with a cephem sulfone. Biochemistry 40, 6233–6239 (2001).
  • Hanson ND, Sanders CC. Regulation of inducible ampC B-lactamase expression among enterobacteriaceae. Curr. Pharm. Design. 5, 881–894 (1999).
  • ••Good review of bla gene regulation.
  • Siu LK, Lu P-L, Chen J-Y, Lin FM, Chang S-C. High-level expression of ampC B-lactamase due to insertion of nucleotides between-10 and-35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum cephalosporin treatment. Antimicrob. Agents Chemother. 47, 2138–2144 (2003).
  • Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48, 15–22 (2004).
  • Thomson KS, Smith Moland E. Version 2000: the new B-lactamases of Gram-negative bacteria at the dawn of the new millennium. Microbes Infect. 2, 1225–1235 (2000).
  • Afzal-Shah M, Woodford N, Livermore DM. Characterization of oxa-25, oxa-26 and oxa-27, molecular class D B-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 45, 583–588 (2001).
  • Golemi D, Maveyraud L, Vakulenko S, et al. The first structural and mechanistic insights for class D B-lactamases: evidence for a novel catalytic process for turnover of B-lactam antibiotics. J. Am. Chem. Soc. 122, 6132–6133 (2000).
  • Maveyraud L, Golemi-Kotra D, Ishiwata A, Meroueh O, Mobashery S, Samama J-P. High-resolution x-ray structure of an acyl-enzyme species for the class D oxa-10 B-lactamase. J. Am. Chem. Soc. 124, 2461–2465 (2002).
  • Poirel L, Girlich T, Nordman B Oxa-28, an extended-spectrum variant of oxa-10 B-lactamase from Pseudomonas aeruginosa and its plasmid-and integron-located gene. Antimicrob. Agents Chemother. 45, 447–453 (2001).
  • Philippon LN, Naas T, Bouthors AT, et al Oxa-18, a class D davulanic acid-inhibited extended-spectrum B-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41, 2188–2195 (1997).
  • Daniel F, Hall LM, Livermore DM. Laboratory mutants of oxa-10 B-lactamase giving ceftazidime resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 43, 339–344 (1999).
  • Livermore DM. Bacterial resistance: origins, epidemiology and impact. Clin. Infect. Dis. 36\(Suppl. 1), S11—S23 (2003).
  • Thomson KS, Sanders CC, Smith Moland E. Use of microdilution panels with and without B-lactamase inhibitors as a phenotypic test for B-lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii and Serratia marcescens. Antimicrob. Agents Chemother. 43, 1393–1400 (1999).
  • Perilli M, Sgatore B, De Massis MR, et al. TEM-72, a new extended-spectrum B-lactamase detected in Proteus mirabilis and Morganella morganii in Italy. Antimicrob. Agents Chemother. 44, 2537–2539 (2000).
  • Hujer AM, Hujer KM, Helfand MS, Anderson VE, Bonomo RA. Amino acid substitutions at ambler position gly238 in the SHV-1 B-lactamase: exploring sequence requirements for resistance to penicillins and cephalosporins. Antimicrob. Agents Chemother. 46, 3971–3977 (2002).
  • Majiduddin FK, Palzkill T An analysis of why highly similar enzymes evolve differently. Genetics 163, 457–466 (2003).
  • ••Excellent paper describing the directionsof mutation in two related proteins.
  • Huletsky AJ, Knox JR, Levesque RC. Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type B-lactamase probed by site-directed mutagenesis and three-dimensional modeling. J. Biol. Chem. 268, 3690–3697 (1993).
  • Wang X, Minasov G, Shoichet BK. The structural bases of antibiotic resistance in the clinically derived mutant B-lactamases TEM-30, TEM-32 and TEM-34. J. Bial Chem. 277, 32149–32156 (2002).
  • ••Good example of the evolution ofESBLs.
  • National Committee for Clinical Laboratory Standards, Performance standards for susceptibility testing; 14th Informational Supplement M100-514, 24, 1. National Committee for Clinical Laboratory Standards, PA, USA (2004).
  • Thomson KS. Controversies about ESBL and AmpC B-lactamases. Emerg. Infect. Dis. 7(2), 333–336 (2001).
  • Aumeran C, Chanal C, Labia R, Sirot D, Sirot J, Bonnet R. Effects of Ser130Gly and Asp240Lys substitutions in extended-spectrum B-lactamase CTX-M-9. Antimicrob. Agents Chemother. 47, 2958–2961 (2003).
  • Winokur PL, Canton R, Casellas J-M, Legakis N. Variations in prevalence of strains expressing an extended-spectrum 0-lactamase phenotype and characterization of isolates from Europe, the Americas and the Western Pacific region. Clin. Infect. Dis. 32\(Suppl. 2), S94—S103 (2001).
  • Goossens H, MYSTIC study group Europe. MYSTIC program: summary of European data from 1997 to 2000. Diag. Microbial. Infect. Dis. 41,183–189 (2001).
  • Mathai D, Todd Lewis M, Kugler KC, Pfaller MA, Jones RN. Antibacterial activity of 41 antimicrobials tested against over 2773 bacterial isolates from hospitalized patients with pneumonia: I-results from the SENTRY antimicrobial surveillance program (North America, 1998). Diag. Microbial. Infect. Dis. 39, 105–116 (2001).
  • Bell JM, Turnidge JD, Gales AC, Pfaller MA, Jones RN. Prevalence of extended-spectrum B-lactamase (ESBL)-producing clinical isolates in the Asia-Pacific region and South Africa: regional results from SENTRY antimicrobial surveillance program (1998-1999). Diag. Microbial. Infect. Dis. 42,193–198 (2002).
  • Sader HS, Jones RN, Andrade-Baiocchi S, Biedenbach DJ. Four-year evaluation of frequency of occurrence and antimicrobial susceptibility patterns of bacteria from bloodstream infections in Latin American medical centers. Diag. Microbial. Infect. Dis. 44,273–280 (2003).
  • Neuhauser, MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among Gram-negative bacilli in US intensive care units. JAMA 289,885–888 (2003).
  • Smith Moland E, Black JA, Ourada J, Reisbig MD, Hanson ND, Thomson K. Occurrence of newer B-lactamases in Klebsiella pneumoniae isolates from 24 US hospitals. Antimicrob. Agents Chemother. 46,3837–3842 (2002).
  • Quale JM, Landman D, Bradford PA, et al. Molecular epidemiology of a citywide outbreak of extended-spectrum B-lactamase-producing Klebsiella pneumoniae infection. Clin. Infect. Dis. 35,834–841 (2002).
  • ••Nice example of il-lactamaseidentification in outbreak strains.
  • Nathisuwan S, Burgess D, Lewis JS 2nd. Extended-spectrum B-lactamases: epidemiology, detection and treatment. Pharmacotherapy 21,920–928 (2001).
  • Tenover FC, Mohanned MJ, Gorton TS, Dembek ZF. Detection and reporting of organisms producing extended-spectrum 0-lactamase: survey of laboratories in Connecticut. J. Clin. Microbial. 37, 4065–4070 (1999).
  • Tenover FC, Raney PM, Williams PP, et al. Evaluation of the NCCLS extended-spectrum B-lactamase confirmation methods for Escherichia coli with isolates collected during project ICARE. J. Clin. Microbial. 41,3142–3146 (2003).
  • Rasheed JK, Anderson GJ, Yigit H, et al. Characterization of the extended-spectrum B-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob. Agents Chemother. 44,2382–2388 (2000).
  • Jacoby GA, Sutton L. Properties of plasmids responsible for production of extended-spectrum B-lactamases. Antimicrob. Agents Chemother. 35, 164–169 (1991).
  • Burgess DSRG 2nd, Lewis JS 2nd, Jorgensen JH, Patterson JE, Hall. Clinical and microbiologic analysis of a hospital's extended-spectrum B-lactamase-producing-isolates over a 2-year period. Pharmacotherapy 23,1232–1237 (2003).
  • Rodriguez-Bano J, Navarro D, Martinez-Martinez L, et al. Clinical epidemiology of extended-spectrum B-lactamase producing enterobacteriaceae in the community. 42nd Interscience Conf Antimicrobial Agents Chemother (2002) (Abstract C2–1880).
  • Doi Y, Shibata N, Shibayama K, et al. Characterization of a novel plasmid-mediated cephalosporinase (CMY-9) and its genetic environment in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 46,2427–2434 (2002).
  • Queenan A-M, Jenkins S, Bush K. Cloning and biochemical characterization of FOX-5, an ampC-type plasmid-encoded B-lactamase from a New York City Klebsiella pneumoniae clinical isolate. Antimicrob. Agents Chemother. 45, 3189–3194 (2001).
  • ••Good example of both genetic andbiochemical characterization of a specific il-lacamase.
  • Rottman M, Benzerara Y, Hanau-Bercot B, Bizet C, Philippon A, Arlet G. Chromosomal ampC genes in Enterobacter species other than Enterobacter cloacae and ancestral association of the ACT-1 plasmid-encoded cephalosporinase to Enterobacter asburiae. FEMS Microbial. Lett. 210, 87–92 (2002).
  • Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumaniae is associated with the combination of ACT-1, a plasmid-mediated ampC B-lactamase and the loss of an outer membrane porin. Antimicrob. Agents Chemother. 41,563–569 (1997).
  • Reisbig MD, Hossain A, Hanson N. Factors influencing gene expression and resistance for Gram-negative organisms expressing plasmid-encoded ampC genes of Enterobacter origin. J. Antimicrob. Chemother. 51,1141–1151 (2003).
  • Fortineau N, Poirel L, Nordmann R Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J. Antimicrob. Chemother. 47, 207–210 (2001).
  • Craig NIL, Craigie R, Gellert M and Lanbowitz AM (Eds), ASM Press, DC, USA 162–173 (2002).
  • Martinez-Martinez L, Pascual A, Hernandez-Alles S, et al. Roles of B-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 43,1669–1673 (1999).
  • Yigit H, Anderson GJ, Biddle JW, et al. Carbapenem resistance in a clinical isolate of Enterobacter aerogenes is associated with decreased expression of ompF and ompC porin analogs. Antimicrob. Agents Chemother. 46,3817–3822 (2002).
  • Coudron PE, Hanson ND, Climo MW Occurrence of extended-spectrum and ampC B-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 ampC B-lactamases. J. Clin. Microbial. 41, 772–777 (2003).
  • Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of plasmid-mediated ampC B-lactamases in the United States. Antimicrob. Agents Chemother. 47, (2004) (In Press).
  • Odeh R, Kelkar S, Hujer AM, Bonomo RA, Schreckenberger PC, Quinn JP. Broad resistance due to plasmid-mediated ampC B-lactamases in clinical isolates of Escherichia coli. Clin. Infect. Dis. 35, 140–145 (2002).
  • Patterson JE, Hardin TC, Kelly CA, Garcia RC, Jorgensen JH. Association of antibiotic utilization measures and control of multiple-drug resistance in Klebsiella pneumoniae. Infect. Control Hosp. Epidemiol. 21,455–458 (2000).
  • Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum B-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 32, 1162–1171 (2001).
  • Rahal JJ, Urban C, Horn D, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 280, 1233–1237 (1998).
  • Wong-Beringer A. Therapeutic challenges associated with extended-spectrum, 13-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Pharmacotherapy 21, 583–592 (2001).

Websites

  • Bush K, Jacoby G. Amino acid sequences for TEM, SHY and OXA extended-spectrum and inhibitor resistant 11-lactamases. Lahey clinic website (Accessed March 2004). www.lahey.org/studies/webt.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.