537
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Pathogenicity mechanisms and host response during oral Candida albicans infections

, , &

References

  • Kleinegger CL, Lockhart SR, Vargas K, Soll DR. Frequency, intensity, species, and strains of oral Candida vary as a function of host age. J Clin Microbiol 1996;34(9):2246-54
  • Coronado-Castellote L, Jimenez-Soriano Y. Clinical and microbiological diagnosis of oral candidiasis. J Clin Exp Dent 2013;5(5):e279-86
  • Soysa NS, Samaranayake LP, Ellepola AN. Antimicrobials as a contributory factor in oral candidosis-a brief overview. Oral Dis 2008;14(2):138-43
  • Farah CS, Lynch N, McCullough MJ. Oral fungal infections: an update for the general practitioner. Aust Dent J 2010;55(Suppl 1):48-54
  • Klein RS, Harris CA, Small CB, et al. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N Engl J Med 1984;311(6):354-8
  • Thompson GR 3rd, Patel PK, Kirkpatrick WR, et al. Oropharyngeal candidiasis in the era of antiretroviral therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109(4):488-95
  • Lalla RV, Latortue MC, Hong CH, et al. A systematic review of oral fungal infections in patients receiving cancer therapy. Support Care Cancer 2010;18(8):985-92
  • Farah CS, Ashman RB, Challacombe SJ. Oral candidosis. Clin Dermatol 2000;18(5):553-62
  • van Boven JF, de Jong-van den Berg LT, Vegter S. Inhaled corticosteroids and the occurrence of oral candidiasis: a prescription sequence symmetry analysis. Drug Saf 2013;36(4):231-6
  • Calderone RA, Clancy CJ. editors. Candida and Candidiasis. ASM press; USA: 2012
  • Bokor-Bratic M, Cankovic M, Dragnic N. Unstimulated whole salivary flow rate and anxiolytics intake are independently associated with oral Candida infection in patients with oral lichen planus. Eur J Oral Sci 2013;121(5):427-33
  • Peters BM, Zhu J, Fidel PL Jr, et al. Protection of the oral mucosa by salivary histatin-5 against Candida albicans in an ex vivo murine model of oral infection. FEMS Yeast Res 2010;10(5):597-604
  • Lindh E, Brannstrom J, Jones P, et al. Autoimmunity and cystatin SA1 deficiency behind chronic mucocutaneous candidiasis in autoimmune polyendocrine syndrome type 1. J Autoimmun 2013;42:1-6
  • McCullough MJ, Savage NW. Oral candidosis and the therapeutic use of antifungal agents in dentistry. Aust Dent J 2005;50(4 Suppl 2):S36-9
  • Gendreau L, Loewy ZG. Epidemiology and etiology of denture stomatitis. J Prosthodont 2011;20(4):251-60
  • Zakikhany K, Naglik JR, Schmidt-Westhausen A, et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 2007;9(12):2938-54
  • Wächtler B, Citiulo F, Jablonowski N, et al. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 2012;7(5):e36952
  • Zhu W, Phan QT, Boontheung P, et al. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci USA 2012;109(35):14194-9
  • Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 2007;5(3):e64
  • Schaller M, Zakikhany K, Naglik JR, et al. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc 2006;1(6):2767-73
  • Weindl G, Naglik JR, Kaesler S, et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest 2007;117(12):3664-72
  • Costa AC, Pereira CA, Junqueira JC, Jorge AO. Recent mouse and rat methods for the study of experimental oral candidiasis. Virulence 2013;4(5):391-9
  • Takakura N, Sato Y, Ishibashi H, et al. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol 2003;47(5):321-6
  • Nett JE, Marchillo K, Spiegel CA, Andes DR. Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun 2010;78(9):3650-9
  • Lee H, Yu A, Johnson CC, et al. Fabrication of a multi-applicable removable intraoral denture system for rodent research. J Oral Rehabil 2011;38(9):686-90
  • Park H, Liu Y, Solis N, et al. Transcriptional responses of Candida albicans to epithelial and endothelial cells. Eukaryot Cell 2009;8(10):1498-510
  • Wächtler B, Wilson D, Haedicke K, et al. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 2011;6(2):e17046
  • Chaffin WL. Candida albicans cell wall proteins. Microbiol Mol Biol Rev 2008;72(3):495-544
  • Li X, Yan Z, Xu J. Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 2003;149(Pt 2):353-62
  • Shirtliff ME, Peters BM, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 2009;299(1):1-8
  • Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007;71(2):348-76
  • Zhu W, Filler SG. Interactions of Candida albicans with Epithelial Cells. Cell Microbiol 2010;12(3):273-82
  • Sundstrom P. Adhesion in Candida spp. Cell Microbiol 2002;4(8):461-9
  • Naglik JR, Fostira F, Ruprai J, et al. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol 2006;55(Pt 10):1323-7
  • Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol 2008;46(1):1-15
  • Garcia MC, Lee JT, Ramsook CB, et al. A role for amyloid in cell aggregation and biofilm formation. PLoS One 2011;6(3):e17632
  • Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 2011;10(2):168-73
  • Coleman DA, Oh SH, Zhao X, et al. Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods 2009;78(1):71-8
  • Laforce-Nesbitt SS, Sullivan MA, Hoyer LL, Bliss JM. Inhibition of Candida albicans adhesion by recombinant human antibody single-chain variable fragment specific for Als3p. FEMS Immunol Med Microbiol 2008;54(2):195-202
  • Moran GP, Coleman DC, Sullivan DJ. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic? Int J Microbiol 2012;2012:205921
  • Peters BM, Ovchinnikova ES, Krom BP, et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology 2012;158(Pt 12):2975-86
  • Ponniah G, Rollenhagen C, Bahn YS, et al. State of differentiation defines buccal epithelial cell affinity for cross-linking to Candida albicans Hwp1. J Oral Pathol Med 2007;36(8):456-67
  • Sundstrom P, Balish E, Allen CM. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 2002;185(4):521-30
  • Staab JF, Datta K, Rhee P. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. PLoS One 2013;8(11):e80842
  • Li F, Svarovsky MJ, Karlsson AJ, et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 2007;6(6):931-9
  • Sahni N, Yi S, Daniels KJ, et al. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog 2009;5(10):e1000601
  • Li F, Palecek SP. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 2008;154(Pt 4):1193-203
  • Fu Y, Luo G, Spellberg BJ, et al. Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell 2008;7(3):483-92
  • Sandini S, La Valle R, De Bernardis F, et al. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 2007;9(5):1223-38
  • De Bernardis F, Liu H, O’Mahony R, et al. Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis 2007;195(1):149-57
  • Gale CA, Bendel CM, McClellan M, et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 1998;279(5355):1355-8
  • Alberti-Segui C, Morales AJ, Xing H, et al. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 2004;21(4):285-302
  • Norice CT, Smith FJ Jr, Solis N, et al. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot Cell 2007;6(11):2046-55
  • Umeyama T, Kaneko A, Watanabe H, et al. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect Immun 2006;74(4):2373-81
  • Granger BL, Flenniken ML, Davis DA, et al. Yeast wall protein 1 of Candida albicans. Microbiology 2005;151(Pt 5):1631-44
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003;67(3):400-28
  • Park H, Myers CL, Sheppard DC, et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 2005;7(4):499-510
  • Villar CC, Zhao XR. Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells. Mol Oral Microbiol 2010;25(3):215-25
  • Dalle F, Wachtler B, Coralie L, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 2010;12(2):248-71
  • Villar CC, Kashleva H, Nobile CJ, et al. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 2007;75(5):2126-35
  • Phan QT, Fratti RA, Prasadarao NV, et al. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem 2005;280(11):10455-61
  • Sun JN, Solis NV, Phan QT, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog 2010;6(11):e1001181
  • Moreno-Ruiz E, Galan-Diez M, Zhu W, et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell Microbiol 2009;11(8):1179-89
  • Frank CF, Hostetter MK. Cleavage of E-cadherin: a mechanism for disruption of the intestinal epithelial barrier by Candida albicans. Transl Res 2007;149(4):211-22
  • Nobile CJ, Solis N, Myers CL, et al. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 2008;10(11):2180-96
  • Wagener J, Weindl G, de Groot PW, et al. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One 2012;7(11):e50518
  • Villar CC, Chukwuedum Aniemeke J, Zhao XR, Huynh-Ba G. Induction of apoptosis in oral epithelial cells by Candida albicans. Mol Oral Microbiol 2012;27(6):436-48
  • Naglik JR, Moyes DL, Wachtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 2011;13(12-13):963-76
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008;6(1):67-78
  • Moyes DL, Runglall M, Murciano C, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 2010;8(3):225-35
  • Naglik JR, Moyes D. Epithelial cell innate response to Candida albicans. Adv Dent Res 2011;23(1):50-5
  • Dongari-Bagtzoglou A, Fidel PL Jr. The host cytokine responses and protective immunity in oropharyngeal candidiasis. J Dent Res 2005;84(11):966-77
  • Moyes DL, Murciano C, Runglall M, et al. Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med Microbiol Immunol 2012;201(1):93-101
  • Jayatilake JA, Samaranayake LP, Lu Q, Jin LJ. IL-1alpha, IL-1ra and IL-8 are differentially induced by Candida in experimental oral candidiasis. Oral Dis 2007;13(4):426-33
  • Murciano C, Moyes DL, Runglall M, et al. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One 2012;7(3):e33362
  • Moyes DL, Shen C, Murciano C, et al. Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling. J Infect Dis 2014. [Epub ahead of print]
  • Cheng SC, van de Veerdonk FL, Lenardon M, et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol 2011;90(2):357-66
  • Miramon P, Kasper L, Hube B. Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013;202(3):183-95
  • Fradin C, De Groot P, MacCallum D, et al. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 2005;56(2):397-415
  • Svobodova E, Staib P, Losse J, et al. Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. J Immunol 2012;189(5):2502-11
  • Steubesand N, Kiehne K, Brunke G, et al. The expression of the beta-defensins hBD-2 and hBD-3 is differentially regulated by NF-kappaB and MAPK/AP-1 pathways in an in vitro model of Candida esophagitis. BMC Immunol 2009;10:36
  • Yano J, Kolls JK, Happel KI, et al. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS One 2012;7(9):e46311
  • Lilly EA, Yano J, Fidel PL Jr. Annexin-A1 identified as the oral epithelial cell anti-Candida effector moiety. Mol Oral Microbiol 2010;25(4):293-304
  • Yano J, Lilly EA, Steele C, et al. Oral and vaginal epithelial cell anti-Candida activity is acid labile and does not require live epithelial cells. Oral Microbiol Immunol 2005;20(4):199-205
  • Naglik JR, Fidel PL Jr, Odds FC. Animal models of mucosal Candida infection. FEMS Microbiol Lett 2008;283(2):129-39
  • Fidel PL Jr. Immunity to Candida. Oral Dis 2002;8(Suppl 2):69-75
  • Glocker EO, Grimbacher B. Mucosal antifungal defence: IL-17 signalling takes centre stage. Immunol Cell Biol 2011;89(8):823-5
  • Farah CS, Gotjamanos T, Seymour GJ, Ashman RB. Cytokines in the oral mucosa of mice infected with Candida albicans. Oral Microbiol Immunol 2002;17(6):375-8
  • Hernandez-Santos N, Gaffen SL. Th17 cells in immunity to Candida albicans. Cell Host Microbe 2012;11(5):425-35
  • Kuchroo VK, Awasthi A. Emerging new roles of Th17 cells. Eur J Immunol 2012;42(9):2211-14
  • De Luca A, Zelante T, D’Angelo C, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 2010;3(4):361-73
  • Farah CS, Hu Y, Riminton S, Ashman RB. Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene-targeting. Oral Microbiol Immunol 2006;21(4):252-5
  • Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009;206(2):299-311
  • Lilic D. Unravelling fungal immunity through primary immune deficiencies. Curr Opin Microbiol 2012;15(4):420-6
  • Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2002;2(2):73-85
  • Junqueira JC, Martins Jda S, Faria RL, et al. Photodynamic therapy for the treatment of buccal candidiasis in rats. Lasers Med Sci 2009;24(6):877-84
  • Warnke PH, Becker ST, Podschun R, et al. The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Craniomaxillofac Surg 2009;37(7):392-7
  • Vazquez JA, Zawawi AA. Efficacy of alcohol-based and alcohol-free melaleuca oral solution for the treatment of fluconazole-refractory oropharyngeal candidiasis in patients with AIDS. HIV Clin Trials 2002;3(5):379-85
  • Ishijima SA, Hayama K, Burton JP, et al. Effect of Streptococcus salivarius K12 on the in vitro growth of Candida albicans and its protective effect in an oral candidiasis model. Appl Environ Microbiol 2012;78(7):2190-9
  • Matsubara VH, Silva EG, Paula CR, et al. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis 2012;18(3):260-4
  • Hatakka K, Ahola AJ, Yli-Knuuttila H, et al. Probiotics reduce the prevalence of oral candida in the elderly – a randomized controlled trial. J Dent Res 2007;86(2):125-30
  • Villar CC, Dongari-Bagtzoglou A. Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Expert Rev Mol Med 2008;10:e29
  • Spellberg BJ, Ibrahim AS, Avanesian V, et al. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 2006;194(2):256-60
  • Lin L, Ibrahim AS, Xu X, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 2009;5(12):e1000703
  • Schmidt CS, White CJ, Ibrahim AS, et al. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 2012;30(52):7594-600
  • Jacobsen ID, Wilson D, Wachtler B, et al. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 2012;10(1):85-93
  • Moyes DL, Murciano C, Runglall M, et al. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One 2011;6(11):e26580
  • Murciano C, Moyes DL, Runglall M, et al. Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun 2011;79(12):4902-11
  • Moyes DL, Naglik JR. Mucosal immunity and Candida albicans infection. Clin Dev Immunol 2011;2011:346307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.