273
Views
11
CrossRef citations to date
0
Altmetric
Reviews

New targets in the search for preventive and therapeutic agents for botulism

, , , , &

References

  • Sobel J. Botulism. Clin Infect Dis 2005;41(8):1167-73
  • Fenicia L, Anniballi F. Infant botulism. Ann Ist Super Sanità 2009;45(2):134-46
  • Dembek ZF, Smith LA, Rusnak JM. Botulism: cause, effects, diagnosis, clinical and laboratory identification, and treatment modalities. Disaster Med Public Health Prep 2007;1(2):122-34
  • Thanongsaksrikul J, Chaicumpa W. Botulinum neurotoxins and botulism: a novel therapeutic approach. Toxins (Basel) 2011;3(5):469-88
  • Lonati D, Rossetto O, Fenicia L, Locatelli C. Botulism. In: General and Applied Toxicology (Volume 6). Ballantyne B, Marrs TC, Syversen T, editors. John Wiley & Sons Ltd; Chichester, UK: 2009. p. 3555-79
  • Arnon SS, Schechter R, Maslanka SE, et al. Human botulism immune globulin for the treatment of Infant botulism. N Engl J Med 2006;354(5):462-71
  • Vanella de Cuetos EE, Ferndandez RA, Bianco MI, et al. Equine botulinum antitoxin for the treatment of infant botulism. Clin Vaccine Immunol 2011;18(11):1845-9
  • Smith LA. Botulism and vaccine for its prevention. Vaccine 2009;27(Suppl 4):D33-9
  • Hallett M, Albanese A, Dressler D, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 2013;67:94-114
  • Lund BM, Peck MW. Clostridium botulinum. In: Lund BM, Baird-Parker TC, Gould GW, editors. The microbiological safety and quality of food. (Volume 2). Aspen Publishers Inc; Gaithersburg, MD, USA: 2000. p. 1057-109
  • Peck MW. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Microbiol 2006;101(3):556-70
  • Peck MW, Stringer SC, Carter AT. Clostridium botulinum in the post-genomic era. Food Microbiol 2011;28(2):183-91
  • Arnon SS, Schecter R, Inglesby TV, et al. Botulinum toxin as a biological weapon: medical and public health management. J Am Med Assoc 2001;285(8):1059-70
  • Katona P. Botulinum toxin: therapeutic agent to cosmetic enhancement to lethal biothreat. Anaerobe 2012;18(2):240-3
  • Select agents and toxins list. Available from: www.selectagents.gov
  • Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 2013;209(2):183-91
  • Dover N, Barash JR, Hill KK, et al. Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 2013;209(2):192-202
  • Hill KK, Smith TJ. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 2013;364:1-20
  • Rossetto O, Megighian A, Scorzeto M, Montecucco C. Botulinum neurotoxins. Toxicon 2013;67:31-6
  • Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 2014;12(8):535-49
  • Montecucco C, Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 1994;346(1):92-8
  • Rummel A. The molecular and structural biology of Clostridium botulinum neurotoxins reveal insights into the sophisticated mechanism of neurotoxicity. In: Clostridium botulinum: a spore forming organism and a challenge to food safety. Rasetti-Escargueil C, Surman-Lee S, editors. Nova Science Publishers Inc; New York, USA: 2012. p. 37-70
  • Chen S. Clostridial neurotoxins: mode of substrate recognition and novel therapy development. Curr Protein Pept Sci 2013. [Epub ahead of print]
  • Swaminathan S. Molecular structures and functional relationships in clostridial neurotoxins. FEBS J 2011;278(23):4467-85
  • Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev 2000;80(2):717-66
  • Smith TJ, Hill KK, Foley BT, et al. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3,/Ba4 and/B1 clusters are located within plasmids. PLoS One 2007;2(12):e1271
  • Connan C, Denève C, Mazuet C, Popoff MR. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 2013;75:90-100
  • Fujinaga Y. Passage of botulinum toxin through the intestinal barrier. In: Clostridium botulinum: a spore forming organism and a challenge to food safety. Rasetti-Escargueil C, Surman-Lee S, editors. Nova Science Publishers Inc; New York, USA: 2012. p. 119-33
  • Peck MW. Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 2009;55:183-265, 320
  • Popoff MR, Mazuet C. Clostridium botulinum: history, strain and neurotoxin diversity. In: Rasetti-Escargueil C, Surman-Lee S, editors. Clostridium botulinum: a spore forming organism and a challenge to food safety. Nova Science Publishers Inc; New York, USA: 2012. p. 1-36
  • Taylor JY, Wolfe CR, Dixon TC, et al. Wound botulism complicating internal fixation of a complex radial fracture. J Clin Microbiol 2010;48(2):650-3
  • Simpson L. The life history of a botulinum toxin molecule. Toxicon 2013;68:40-59
  • Patel K, Cai S, Singh BR. Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin Drug Discov 2014;9(3):319-33
  • Karalewitz AP, Barbieri JT. Vaccines against botulism. Curr Opin Microbiol 2012;15(3):3941-7
  • Przedpelski A, Tepp WH, Kroken AR, et al. Enhancing the protective immune response against botulism. Infect Immun 2013;81(7):2638-44
  • Zhang JC, Sun L, Nie QH. Botulism, where are now? Clin Toxicol 2010;48(9):867-79
  • Jones RG, Liu Y, Rigsby P, Sesardic D. An improved method for development of toxoid vaccines and antitoxins. J Immunol Methods 2008;337(1):42-8
  • Rusnak JM, Smith LA. Botulism neurotoxin vaccines: past history and recent developments. Hum Vaccin 2009;5(12):794-805
  • Yu YZ, Guo JP, An HJ, et al. Potent tetravalent replicon vaccines against botulinum neurotoxins using DNA-based Semliki Forest virus replicon vectors. Vaccine 2013;31(20):2427-32
  • Yuki Y, Mejima M, Kurokawa S, et al. RNAi suppression of rice endogenous storage proteins enhances the production of rice-based botulinum neurotoxin type A vaccine. Vaccine 2012;30(28):4160-6
  • Ziche R, Mimran A, Keren A, et al. Efficacy of a potential trivalent vaccine based on Hc fragment of botulinum toxin A, B, and produced in a cell-free expression system. Clin Vaccine Immunol 2010;17(5):784-92
  • Yu YZ, Liu S, MA Y, et al. Pentavalent replicon vaccines against botulinum neurotoxins and tetanus toxin using DNA-based Semliki Forest virus replicon vectors. Hum Vaccin Immunother 2014;10(8). [Epub ahead of print]
  • Whit DM, Pellet S, Jensen MA, et al. Rapid immune response to a botulinum neurotoxin Hc subunit vaccine through in vitro targeting to antigen-presenting cells. Infect Immun 2011;79(8):3388-96
  • Li N, Yu YZ, YU WY, Sun ZW. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 2011;33(1):211-19
  • Diamant E, Lachmi BE, Keren A, et al. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations. PLoS One 2014;9(1):e87089
  • Tremblay JM, Kou CL, Abeijon C, et al. Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases. Toxicon 2010;56(6):990-8
  • Morris MC, Deshayes S, Heitz F, Divita G. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 2008;100(4):201-17
  • Simpson L. The life history of a botulinum toxin molecule. Toxicon 2013;68:40-59
  • Sharma R, Zhao H, Al-Saleem FH, et al. Mechanisms of enhanced neutralization of botulism neurotoxin by monoclonal antibodies conjugated to antibodies specific for the erythrocyte complement receptor. Mol Immunol 2014;57(2):247-54
  • Cai S, Singh BR. Strategies to design inhibitors of Clostridium botulinum neurotoxins. Infect Disord Drug Targets 2007;7(1):47-57
  • Shi YL, Wang ZF. Cure of experimental botulism and antibotulismic effect of toosendanin. Acta Pharmacol Sin 2004;25(6):839-48
  • Li B, Peet NP, Butler MM, et al. Small molecule inhibitors as countermeasures for botulinum neurotoxin intoxication. Molecules 2011;16(1):202-20
  • Zhou JY, Wang ZF, Ren XM, et al. Antagonism of botulinum toxin A-induced cleavage of SNAP-25 in rat cerebral synaptosome by toosendanin. FEBS Lett 2003;555(2):375-9
  • Li MF, Shi YL. Toosendanin interferes with pore formation of botulinum toxin type A in PC 12 cell membrane. Acta Pharmacol Sin 2005;27(1):66-70
  • Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol 2007;82(1):1-10
  • Nakai Y, Tepp WH, Dickerson TJ, et al. Function-oriented synthesis applied to the anti-botulinum natural product toosendanin. Bioorg Med Chem 2009;17(3):1152-7
  • Nakai Y, Pellett S, Tepp WH, et al. Toosendanin: synthesis of the AB-ring and investigations of its anti-botulinum properties (Part II). Bioorg Med Chem 2010;18(3):1280-7
  • Simpson LL, Coffield JA, Bakry N. Inhibition of vacuolar adenosine triphosphate antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 1994;269(1):256-62
  • Caglic D, Krutein M, Bompiani KM, et al. Identification of clinically viable quinolinol inhibitors of botulinum A2 light chain. J Med Chem 2014;57(3):669-76
  • Capková K, Salzameda NT, Janda KD. Investigations into small molecule non-peptidic inhibitors of the botulinum neurotoxins. Toxicon 2009;54(5):575-82
  • Thompson AA, Jiao GS, Kim S, et al. Structural characterization of three novel hydroxamate-based zinc chelating inhibitors of the C. botulinum serotype A neurotoxin light chain metalloprotease reveals a compact binding site resulting from 60/70 loop flexibility. Biochemistry 2011;50(19):4019-28
  • Silhár P, Silvaggi NR, Pellett S, et al. Evaluation of adamantine hydroxamates as botulinum neurotoxin inhibitors: synthesis, crystallography, modeling, kinetic and cellular based studies. Bioor Med Chem 2013;21(5):1344-8
  • Eubanks LM, Silhár P, Salzameda NT, et al. Identification of a natural product antagonist against the botulinum neurotoxin light chain protease. ACS Med Chem Lett 2010;1(6):268-72
  • Salzameda NT, Eubanks LM, Zakhari JS, et al. A cross-over inhibitor of the botulinum neurotoxin light chain B: a natural product implicating and exosite mechanism of action. Chem Commun (Camb) 2011;47(6):1713-15
  • Silhár P, Alakurtii S, Capková K, et al. Synthesis and evaluation of library of botulin derivatives against the botulinum neurotoxin A protease. Bioorg Med Chem Lett 2011;21(8):2229-31
  • Li B, Cardinale SC, Bulter MM, et al. Time-dependent botulinum neurotoxin serotype A metalloprotease inhibitors. Bioorg Med Chem 2011;19(24):7338-48
  • Mayorov AV, Willis B, Di Mola A, et al. Symptomatic relief of botulinum neurotoxin/A intoxication with aminopyridines – a new twist on an old molecule. ACS Chem Biol 2010;5(12):1183-91
  • Zakhari JS, Kinoyama I. Hixon Ms et al. Formulating a new basis for the treatment against botulinum neurotoxin intoxication: 3,4-diamonopyridine prodrug design and characterization. Bioorg Med Chem 2011;19(21):6203-9
  • Adler M, Deshpande SS, Apland JP, et al. Reversal of BoNT/A-mediated inhibition of muscle paralysis by 3,4-diamonopyridine and roscovitine in mouse phrenic nerve-hemidiaphragm preparations. Neurochem Int 2012;61(6):866-73
  • Swaminathan S. Structure-based drug discovery for botulinum neurotoxins. Curr Top Microbiol Immunol 2013;364:197-218
  • Kumar G, Kumaran D, Ahmed SA, Swaminathan S. Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structures, structure-activity relationship and pharmacophore modeling. Acta Cristallogr D Biol Crystallogr 2012;68(Pt5):511-20
  • Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol 2013;4(1):27-40
  • Peck MW, Stringer SC. The safety of pasteurized in-pack chilled meat products with respect to the foodborne botulism hazard. Meat Sci 2005;70(3):461-75
  • Lindström M, Kiviniemi K, Korkeala H. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int J Food Microbiol 2006;108(1):92-104
  • Peck MW, Goodburn KE, Betts RP, Stringer SC. Assessment of the potential for growth and neurotoxin formation by non-proteolytic Clostridium botulinum in short shelf-life commercial foods designed to be stored chilled. Trends Food Sci Technol 2008;19:207-16
  • Stringer SC, Webb MD, Peck MW. Contrasting effects of heat treatment and incubation temperature on germination and outgrowth of individual spores of nonproteolytic Clostridium botulinum bacteria. Appl Environ Microbiol 2009;75(9):2712-19
  • Stringer SC, Webb MD, Peck MW. Lag time variability in individual spores of Clostridium botulinum. Food Microbiol 2011;28(2):228-35
  • Dahlsten E, Isokallio M, Somervuo P, et al. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response. PLoS One 2014;9(2):e89958
  • Hauschild AH. Clostridium botulinum. In: Doyle PM, editor. Foodborne bacterial pathogens. Marcel Dekker Inc; New York, USA: 1989. p. 111-78
  • Shehata A, Schrödl W, Neuhaus J, Krüger M. Antagonistic effect of different bacteria on Clostridium botulinum types A, B, D, and E in vitro. Vet Rec 2013;172(2):47
  • Okereke A, Montville TJ. Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Appl Environ Microbiol 1991;57(12):3423-8
  • Jordan K, Dalmasso M, Zentek J, et al. Microbes versus microbes: control of pathogens in the food chain. J Sci Food Agric 2014. [Epub ahead of print]
  • Vandenplas Y, De Greef E, Hauser B, et al. Probiotics and prebiotics in pediatric diarrheal disorders. Expert Opin Pharmacother 2013;14(4):397-409
  • Fenicia L, Ferrini AM, Anniballi F, et al. Considering the antimicrobial sensitivity of the intestinal botulism agent Clostridium butyricum when treating concomitant infections. Eur J Epidemiol 2003;18(12):1153-4
  • Pirazzini M, Bordin F, Rossetto O, et al. The thioredoxin reductase-thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett 2013;587(2):150-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.