1,377
Views
412
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms of antibiotic resistance in enterococci

, &

References

  • Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev 1990;3:46-65
  • Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008;29:996-1011
  • Williamson R, Calderwood SB, Moellering RC, et al. Studies on the mechanism of intrinsic resistance to beta-lactam antibiotics in group D streptococci. J Gen Microbiol 1983;129:813-22
  • Schatz A and Waksman S. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc Soc Exp Biol Med 1944;57:244-8
  • Robbins WC and Tompsett R. Treatment of enterococcal endocarditis and bacteremia; results of combined therapy with penicillin and streptomycin. Am J Med 1951;10:278-99
  • Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 2005;111:e394-434
  • Lebreton F, van Schaik W, McGuire AM, et al. Emergence of Epidemic Multidrug-Resistant Enterococcus faecium from Animal and Commensal Strains. MBio 2013;4:e00534-13
  • Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012;10:266-78
  • Chang S, Sievert D, Hageman J, et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 2003;348:1342-7
  • Ray A, Pultz N, Bhalla A, et al. Coexistence of vancomycin-resistant enterococci and Staphylococcus aureus in the intestinal tracts of hospitalized patients. Clin Infect Dis 2003;37:875-81
  • Williamson R, Gutmann L, Horaud T, et al. Use of Penicillin-binding Proteins for the identification of enterococci. J Gen Microbiol 1986;132:1929-37
  • Duez C, Hallut S, Rhazi N, et al. The ponA gene of Enterococcus faecalis JH2-2 codes for a low-affinity class A penicillin-binding protein. J Bacteriol 2004;186:4412-16
  • Signoretto C, Boaretti M and Canepari P. Cloning, sequencing and expression in Escherichia coli of the low-affinity penicillin binding protein of Enterococcus faecalis. FEMS Microbiol Lett 1994;123:99-106
  • Sifaoui F, Arthur M, Rice L, et al. Role of Penicillin-Binding Protein 5 in Expression of Ampicillin Resistance and Peptidoglycan Structure in Enterococcus faecium. Antimicrob Agents Chemother 2001;45:2594-7
  • Rice LB, Carias LL, Hutton-Thomas R, et al. Penicillin-Binding Protein 5 and Expression of Ampicillin Resistance in Enterococcus faecium. Antimicrob Agents Chemother 2001;45:1480-6
  • Fontana R, Aldegheri M, Ligozzi M, et al. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 1994;38:1980-3
  • Rice LB, Bellais S, Carias LL, et al. Impact of Specific pbp5 Mutations on Expression of Beta-Lactam Resistance in Enterococcus faecium. Antimicrob Agents Chemother 2004;48:3028-32
  • Galloway-Peña JR, Rice LB, Murray BE. Analysis of PBP5 of early U.S. isolates of Enterococcus faecium: sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob Agents Chemother 2011;55:3272-7
  • Duez C, Zorzi W, Sapunaric F, et al. The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology 2001;147:2561-9
  • Ono S, Muratani T, Matsumoto T. Mechanisms of Resistance to Imipenem and Ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother 2005;49:2954-8
  • Murray BE. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 1992;36:2355-9
  • Coudron PE, Markowitz SM, Wong ES. Isolation of a betalactamase-producing, aminoglycoside-resistant strain of Enterococcus faecium. Antimicrob Agents Chemother 1992;36:1125-6
  • Hackbarth CJ, Chambers HF. blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1993;37:1144-9
  • Sarti M, Campanile F, Sabia C, et al. Polyclonal diffusion of beta-lactamase-producing Enterococcus faecium. J Clin Microbiol 2012;50:169-72
  • Mainardi JL, Legrand R, Arthur M, et al. Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 2000;275:16490-6
  • Sacco E, Hugonnet JE, Josseaume N, et al. Activation of the L,D-transpeptidation peptidoglycan cross-linking pathway by a metallo-D,D-carboxypeptidase in Enterococcus faecium. Mol Microbiol 2010;75:874-85
  • Cremniter J, Mainardi JL, Josseaume N, et al. Novel mechanism of resistance to glycopeptide antibiotics in Enterococcus faecium. J Biol Chem 2006;281:32254-62
  • Rice LB, Carias LL, Rudin S, et al. Role of class A penicillin-binding proteins in the expression of beta-lactam resistance in Enterococcus faecium. J Bacteriol 2009;191:3649-56
  • Arbeloa A, Segal H, Hugonnet JE, et al. Role of class A penicillin-binding proteins in PBP5-mediated beta-lactam resistance in Enterococcus faecalis. J Bacteriol 2004;186:1221-8
  • Hancock LE, Perego M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 2004;186:7951-8
  • Comenge Y, Quintiliani R Jr, Li L, et al. The CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol 2003;185:7184-92
  • Le Breton Y, Muller C, Auffray Y, et al. New insights into the Enterococcus faecalis CroRS two-component system obtained using a differential-display random arbitrarily primed PCR approach. Appl Environ Microbiol 2007;73:3738-41
  • Muller C, Le Breton Y, Morin T, et al. The response regulator CroR modulates expression of the secreted stress-induced SalB protein in Enterococcus faecalis. J Bacteriol 2006;188:2636-45
  • Kristich CJ, Wells CL, Dunny GM. A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci USA 2007;104:3508-13
  • Kristich CJ, Little JL, Hall CL, et al. Reciprocal regulation of cephalosporin resistance in Enterococcus faecalis. MBio 2011;2:e00199-11
  • Hall CL, Tschannen M, Worthey EA, et al. IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis. Antimicrob Agents Chemother 2013;57:6179-86
  • Vesić D, Kristich CJ. MurAA is required for intrinsic cephalosporin resistance of Enterococcus faecalis. Antimicrob Agents Chemother 2012;56:2443-51
  • Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006;42:S25-34
  • Guardabassi L, Agersø Y. Genes homologous to glycopeptide resistance vanA are widespread in soil microbial communities. FEMS Microbiol Lett 2006;259:221-5
  • Boyd DA, Willey BM, Fawcett D, et al. Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother 2008;52:2667-72
  • Xu X, Lin D, Yan G, et al. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 2010;54:4643-7
  • Lebreton F, Depardieu F, Bourdon N, et al. D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 2011;55:4606-12
  • Depardieu F, Podglajen I, Leclercq R, et al. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007;20:79-114
  • Arthur M, Depardieu F, Molinas C, et al. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 1995;154:87-92
  • Baptista M, Depardieu F, Reynolds P, et al. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol 1997;25:93-105
  • Arias CA, Courvalin P, Reynolds PE. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother 2000;44:1660-6
  • Arias CA, Martín-Martinez M, Blundell TL, et al. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol 1999;31:1653-64
  • Fines M, Perichon B, Reynolds P, et al. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 1999;43:2161-4
  • Abadía Patiño L, Courvalin P, Perichon B. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J Bacteriol 2002;184:6457-64
  • Depardieu F, Kolbert M, Pruul H, et al. VanD-type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 2004;48:3892-904
  • Yowler CJ, Blinkhorn RJ, Fratianne RB. Vancomycin-dependent enterococcal strains: case report and review. J Trauma 2000;48:783-5
  • San Millan A, Depardieu F, Godreuil S, et al. VanB-type Enterococcus faecium clinical isolate successively inducibly resistant to, dependent on, and constitutively resistant to vancomycin. Antimicrob Agents Chemother 2009;53:1974-82
  • Steenbergen JN, Alder J, Thorne GM, et al. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 2005;55:283-8
  • Muraih JK, Harris J, Taylor SD, et al. Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta 2012;1818:673-8
  • Zhang T, Muraih JK, Tishbi N, et al. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J Biol Chem 2014;289:11584-91
  • Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 2012;194:4494-504
  • Cantón R, Ruiz-Garbajosa P, Chaves R, et al. A potential role for daptomycin in enterococcal infections: what is the evidence? J Antimicrob Chemother 2010;65:1126-36
  • Arias CA, Panesso D, McGrath DM, et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 2011;365:892-900
  • Jordan S, Junker A, Helmann JD, et al. Regulation of LiaRS-dependent gene expression in bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 2006;188:5153-66
  • Munita JM, Tran TT, Diaz L, et al. A liaF codon deletion abolishes daptomycin bactericidal activity against vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 2013;57:2831-3
  • Palmer KL, Daniel A, Hardy C, et al. Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother 2011;55:3345-56
  • Jones T, Yeaman MR, Sakoulas G, et al. Failures in clinical treatment of Staphylococcus aureus Infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 2008;52:269-78
  • Tran TT, Panesso D, Mishra NN, et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio 2013;4:13
  • Miller C, Kong J, Tran TT, et al. Adaptation of enterococcus faecalis to daptomycin reveals an ordered progression to resistance. Antimicrob Agents Chemother 2013;57:5373-83
  • Tran TT, Panesso D, Gao H, et al. Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycin-resistant variant arising during therapy. Antimicrob Agents Chemother 2013;57(1):261-8
  • Dubrac S, Bisicchia P, Devine KM, et al. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 2008;70:1307-22
  • Mishra NN, Bayer AS, Tran TT, et al. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content. PLoS One 2012;7:e43958
  • Diaz L, Tran TT, Munita JM, et al. Whole-Genome Analyses of Enterococcus faecium Isolates with Diverse Daptomycin MICs. Antimicrob Agents Chemother 2014;58:4527-34
  • Munita J, Panesso D, Diaz L, et al. Correlation between mutations in liaFSR of Enterococcus faecium and MIC of daptomycin: revisiting daptomycin breakpoints. Antimicrob Agents Chemother 2012;56:4354-9
  • Munita JM, Mishra NN, Alvarez D, et al. Failure of High-Dose Daptomycin for Bacteremia Caused by Daptomycin Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Clin Infect Dis 2014. [Epub ahead of print]
  • Sakoulas G, Bayer AS, Pogliano J, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 2012;56:838-44
  • Hall Snyder A, Werth BJ, Barber KE, et al. Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. J Antimicrob Chemother 2014;69(8):2148-54
  • Sakoulas G, Rose W, Nonejuie P, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 2014;58:1494-500
  • Costa Y, Galimand M, Leclercq R, et al. Characterization of the chromosomal aac(6’)-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother 1993;37:1896-903
  • Galimand M, Schmitt E, Panvert M, et al. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 2011;17:251-62
  • Eliopoulos GM, Farber BF, Murray BE, et al. Ribosomal resistance of clinical enterococcal to streptomycin isolates. Antimicrob Agents Chemother 1984;25:398-9
  • Krogstad D, Korfhagen T, Moellering R, et al. Aminoglycoside-inactivating enzymes in clinical isolates of Streptococcus faecalis. An explanation for resistance to antibiotic synergism. J Clin Invest 1978;62:480-6
  • Courvalin P, Carlier C, Collatz E. Plasmid-mediated resistance to aminocyclitol antibiotics in group D streptococci. J Bacteriol 1980;143:541-51
  • Chow J, Zervos M, Lerner S, et al. A novel gentamicin resistance gene in Enterococcus. Antimicrob Agents Chemother 1997;41:511-14
  • Tsai S, Zervos M, Clewell D, et al. A new high-level gentamicin resistance gene, aph(2’’)-Id, in Enterococcus spp. Antimicrob Agents Chemother 1998;42:1229-32
  • Chow J. Aminoglycoside resistance in enterococci. Clin Infect Dis 2000;31:586-9
  • Shinabarger D, Marotti K, Murray R, et al. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 1997;41:2132-6
  • Leach K, Swaney S, Colca J, et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 2007;26:393-402
  • Marshall S, Donskey C, Hutton-Thomas R, et al. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 2002;46:3334-6
  • Boumghar-Bourtchaï L, Dhalluin A, Malbruny B, et al. Influence of recombination on development of mutational resistance to linezolid in Enterococcus faecalis JH2-2. Antimicrob Agents Chemother 2009;53:4007-9
  • Bourgeois-Nicolaos N, Massias L, Couson B, et al. Dose dependence of emergence of resistance to linezolid in Enterococcus faecalis in vivo. J Infect Dis 2007;195:1480-8
  • Locke JB, Hilgers M, Shaw KJ. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob Agents Chemother 2009;53:5275-8
  • Chen H, Wu W, Ni M, et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents 2013;42:317-21
  • Toh S, Xiong L, Arias C, et al. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol 2007;64:1506-14
  • Mendes R, Deshpande L, Castanheira M, et al. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother 2008;52:2244-6
  • Diaz L, Kiratisin P, Mendes R, et al. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 2012;56:3917-22
  • Hennig S and Ziebuhr W. Characterization of the transposase encoded by IS256, the prototype of a major family of bacterial insertion sequence elements. J Bacteriol 2010;192:4153-63
  • Diaz L, Kontoyiannis DP, Panesso D, et al. Dissecting the mechanisms of linezolid resistance in a Drosophila melanogaster infection model of Staphylococcus aureus. J Infect Dis 2013;208:83-91
  • Singh K, Weinstock G, Murray B. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 2002;46:1845-50
  • Hershberger E, Donabedian S, Konstantinou K, et al. Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis 2004;38:92-8
  • Portillo A, Ruiz-Larrea F, Zarazaga M, et al. Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother 2000;44:967-71
  • Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995;39:577-85
  • Canu A, Leclercq R. Overcoming bacterial resistance by dual target inhibition: the case of streptogramins. Curr Drug Targets Infect Disord 2001;1:215-25
  • Werner G, Klare I, Witte W. Molecular analysis of streptogramin resistance in enterococci. Int J Med Microbiol 2002;292:81-94
  • Korczynska M, Mukhtar T, Wright G, et al. Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Proc Natl Acad Sci USA 2007;104:10388-93
  • Fantin B, Leclercq R, Garry L, et al. Influence of inducible cross-resistance to macrolides, lincosamides, and streptogramin B-type antibiotics in Enterococcus faecium on activity of quinupristin-dalfopristin in vitro and in rabbits with experimental endocarditis. Antimicrob Agents Chemother 1997;41:931-5
  • Isnard C, Malbruny B, Leclercq R, et al. Genetic basis for in vitro and in vivo resistance to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) in Enterococcus faecium. Antimicrob Agents Chemother 2013;57:4463-9
  • Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 1996;165:359-69
  • Chopra I and Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001;65:232-60
  • Schwarz S, Cardoso M, Wegener HC. Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob Agents Chemother 1992;36:580-8
  • Pepper K, Horaud T, Le Bouguénec C, et al. Location of antibiotic resistance markers in clinical isolates of Enterococcus faecalis with similar antibiotypes. Antimicrob Agents Chemother 1987;31:1394-402
  • Bentorcha F, De Cespédès G, Horaud T. Tetracycline resistance heterogeneity in Enterococcus faecium. Antimicrob Agents Chemother 1991;35:808-12
  • Bauer G, Berens C, Projan S, et al. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother 2004;53:592-9
  • Fluit A, Florijn A, Verhoef J, et al. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother 2005;49:1636-8
  • Werner G, Gfrörer S, Fleige C, et al. Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient. J Antimicrob Chemother 2008;61:1182-3
  • Cordina C, Hill R, Deshpande A, et al. Tigecycline-resistant Enterococcus faecalis associated with omeprazole use in a surgical patient. J Antimicrob Chemother 2012;67:1806-7
  • Hawkey P. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 2003;51 Suppl 1:29-35
  • Oyamada Y, Ito H, Fujimoto K, et al. Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium. J Med Microbiol 2006;55:729-36
  • López M, Tenorio C, Del Campo R, et al. Characterization of the mechanisms of fluoroquinolone resistance in vancomycin-resistant enterococci of different origins. J Chemother 2011;23:87-91
  • Werner G, Fleige C, Ewert B, et al. High-level ciprofloxacin resistance among hospital-adapted Enterococcus faecium (CC17). Int J Antimicrob Agents 2010;35:119-25
  • Yasufuku T, Shigemura K, Shirakawa T, et al. Mechanisms of and risk factors for fluoroquinolone resistance in clinical Enterococcus faecalis isolates from patients with urinary tract infections. J Clin Microbiol 2011;49:3912-16
  • Hooper D. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 2000;31(Suppl 2):S24-8
  • Arsène S, Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother 2007;51:3254-8
  • Tran J, Jacoby G, Hooper D. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 2005;49:118-25
  • Deshpande L, Fritsche T, Moet G, et al. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 2007;58:163-70
  • Kristich C, Little J. Mutations in the β subunit of RNA polymerase alter intrinsic cephalosporin resistance in Enterococci. Antimicrob Agents Chemother 2012;56:2022-7
  • Enne V, Delsol A, Roe J, et al. Rifampicin resistance and its fitness cost in Enterococcus faecium. J Antimicrob Chemother 2004;53:203-7
  • Rand K, Houck H, Silverman J, et al. Daptomycin-reversible rifampicin resistance in vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother 2007;59:1017-20
  • Chenoweth C, Robinson K, Schaberg D. Efficacy of ampicillin versus trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob Agents Chemother 1990;34:1800-2
  • Grayson M, Thauvin-Eliopoulos C, Eliopoulos G, et al. Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob Agents Chemother 1990;34:1792-4
  • Otto M. Bacterial evasion of antimicrobial peptides by biofilm formation. Curr Top Microbiol Immunol 2006;306:251-8
  • Peschel A, Sahl H. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006;4:529-36
  • Kandaswamy K, Liew T, Wang C, et al. Focal targeting by human β-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci USA 2013;110:20230-5
  • Gilmore M, Lebreton F, Van Tyne D. Dual defensin strategy for targeting Enterococcus faecalis. Proc Natl Acad Sci USA 2013;110:19980-1
  • Theilacker C, Kaczyński Z, Kropec A, et al. Serodiversity of opsonic antibodies against Enterococcus faecalis – glycans of the cell wall revisited. PLoS One 2011;6:e17839
  • Theilacker C, Kaczynski Z, Kropec A, et al. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 2006;74:5703-12
  • Havard CW, Garrod LP, Waterworth PM. Deaf or dead? Br Med J 1959;1:688-9
  • Fernández-Hidalgo N, Almirante B, Gavaldà J, et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating Enterococcus faecalis infective endocarditis. Clin Infect Dis 2013;56:1261-8
  • Munita JM, Arias CA, Murray BE. Editorial commentary: Enterococcus faecalis infective endocarditis: is it time to abandon aminoglycosides? Clin Infect Dis 2013;56:1269-72
  • Farina C, Russello G, Chinello P, et al. In vitro activity effects of twelve antibiotics alone and in association against twenty-seven Enterococcus faecalis strains isolated from Italian patients with infective endocarditis: high in vitro synergistic effect of the association ceftriaxone-fosfomycin. Chemotherapy 2011;57:426-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.