422
Views
54
CrossRef citations to date
0
Altmetric
Reviews

Melioidosis: molecular aspects of pathogenesis

, , &

References

  • Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med 2012;367(11):1035-44
  • Currie BJ, Dance DAB, Cheng AC. The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 2008;102(Suppl 1):S1-4
  • Cheng AC, Currie BJ. Melioidosis: epidemiology, Pathophysiology, and Management. Clin Microbiol Rev 2005;18(2):383-416
  • Currie BJ, Ward L, Cheng AC. The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases from the 20 Year Darwin Prospective Study. PLoS Negl Trop Dis 2010;4(11):e900
  • Lipsitz R, Garges S, Aurigemma R, et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010. Emerg Infect Dis 2012;18(12):e2
  • Schweizer HP. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: implications for treatment of melioidosis. Future Microbiol 2012;7(12):1389-99
  • Rammaert B, Goyet S, Tarantola A. Melioidosis requires better data sharing for improved diagnosis and management in the Mekong region. Am J Trop Med Hyg 2014;90(2):383
  • Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, et al. Increasing Incidence of Human Melioidosis in Northeast Thailand. Am J Trop Med Hyg 2010;82(6):1113-17
  • CDC. Possession, use, and transfer of select agentsand toxins; biennial review. Final rule. Fed Regist 2012;77:61083-115
  • Holden MTG, Titball RW, Peacock SJ, et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 2004;101(39):14240-5
  • Woodman ME, Worth RG, Wooten RM. Capsule Influences the Deposition of Critical Complement C3 Levels Required for the Killing of Burkholderia pseudomallei via NADPH-Oxidase Induction by Human Neutrophils. PLoS One 2012;7(12):e52276
  • Schell MA, Ulrich RL, Ribot WJ, et al. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 2007;64(6):1466-85
  • Heiss C, Burtnick MN, Wang Z, et al. Structural analysis of capsular polysaccharides expressed by Burkholderia mallei and Burkholderia pseudomallei. Carbohydr Res 2012;349:90-4
  • Perry MB, MacLean LL, Schollaardt T, et al. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei. Infect Immun 1995;63(9):3348-52
  • Reckseidler-Zenteno SL, Viteri D-F, Moore R, et al. Characterization of the type III capsular polysaccharide produced by Burkholderia pseudomallei. J Med Microbiol 2010;59(12):1403-14
  • DeShazer D, Brett PJ, Woods DE. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 1998;30(5):1081-100
  • Sim BM, Chantratita N, Ooi WF, et al. Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome Biol 2010;11(8):R89
  • Reckseidler-Zenteno SL, DeVinney R, Woods DE. The Capsular Polysaccharide of Burkholderia pseudomallei Contributes to Survival in Serum by Reducing Complement Factor C3b Deposition. Infect Immun 2005;73(2):1106-15
  • Atkins T, Prior R, Mack K, et al. Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J Med Microbiol 2002;51(7):539-47
  • AuCoin DP, Reed DE, Marlenee NL, et al. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012;7(4):e35386
  • Scott AE, Burtnick MN, Stokes MG, et al. Burkholderia pseudomallei Capsular Polysaccharide Conjugates Provide Protection against Acute Melioidosis. Infect Immun 2014;82(8):3206-13
  • Cuccui J, Milne TS, Harmer N, et al. Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region. Infect Immun 2012;80(3):1209-21
  • Sarkar-Tyson M, Thwaite JE, Harding SV, et al. Polysaccharides and virulence of Burkholderia pseudomallei. J Med Microbiol 2007;56(8):1005-10
  • Ooi WF, Ong C, Nandi T, et al. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet 2013;9(9):e1003795
  • Masoud H, Ho M, Schollaardt T, Perry MB. Characterization of the capsular polysaccharide of Burkholderia (Pseudomonas) pseudomallei 304b. J Bacteriol 1997;179(18):5663-9
  • Steinmetz I, Rohde M, Brenneke B. Purification and characterization of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. Infect Immun 1995;63(10):3959-65
  • Tuanyok A, Stone JK, Mayo M, et al. The genetic and molecular basis of o-antigenic diversity in Burkholderia pseudomallei Lipopolysaccharide. PLoS Negl Trop Dis 2012;6(1):e1453
  • Heiss C, Burtnick MN, Roberts RA, et al. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei. Carbohydr Res 2013;381:6-11
  • Essex-Lopresti AE, Boddey JA, Thomas R, et al. A Type IV Pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo. Infect Immun 2005;73(2):1260-4
  • Boddey JA, Flegg CP, Day CJ, et al. temperature-regulated microcolony formation by Burkholderia pseudomallei requires pila and enhances association with cultured human cells. Infect Immun 2006;74(9):5374-81
  • Nandi T, Ong C, Singh AP, et al. A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathog 2010;6(4):e1000845
  • Sangdee K, Waropastrakul S, Wongratanacheewin S, Homchampa P. Heterologously type IV pilus expressed protein of Burkholderia pseudomallei is immunogenic but fails to induce protective immunity in mice. Southeast Asian J Trop Med Pub Health 2011;42(5):1190-6
  • Lassaux P, Conchillo-Solé O, Manjasetty BA, et al. Redefining the PF06864 Pfam Family Based on Burkholderia pseudomallei PilO2(Bp) S-SAD Crystal Structure. PLoS One 2014;9(4):e94981
  • Morris C, Tam CKP, Wallis TS, et al. Salmonella enterica serovar Dublin strains which are Vi antigen-positive use type IVB pili for bacterial self-association and human intestinal cell entry. Microb Pathog 2003;35(6):279-84
  • Balder R, Lipski S, Lazarus J, et al. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells. BMC Microbiol 2010;10(1):250
  • Lazar Adler NR, Dean RE, Saint RJ, et al. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei. PLoS One 2013;8(11):e79461
  • Campos CG, Borst L, Cotter PA. Characterization of BcaA, a Putative Classical Autotransporter Protein in Burkholderia pseudomallei. Infect Immun 2013;81(4):1121-8
  • Campos CG, Byrd MS, Cotter PA. Functional characterization of Burkholderia pseudomallei trimeric autotransporters. Infect Immun 2013;81(8):2788-99
  • Lazar Adler NR, Stevens JM, Stevens MP, Galyov EE. Autotransporters and their role in the virulence of Burkholderia pseudomallei and Burkholderia mallei. Front Microbiol 2011;2:151
  • Lafontaine E, Balder R, Michel F, Hogan R. Characterization of an autotransporter adhesin protein shared by Burkholderia mallei and Burkholderia pseudomallei. BMC Microbiol 2014;14(1):92
  • Cornelis GR. The type III secretion injectisome. Nat Rev Micro 2006;4(11):811-25
  • Sun GW, Gan Y-H. Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends Microbiol 2010;18(12):561-8
  • Stevens MP, Wood MW, Taylor LA, et al. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 2002;46(3):649-59
  • Stevens MP, Friebel A, Taylor LA, et al. A Burkholderia pseudomallei Type III Secreted Protein, BopE, Facilitates Bacterial Invasion of Epithelial Cells and Exhibits Guanine Nucleotide Exchange Factor Activity. J Bacteriol 2003;185(16):4992-6
  • Stevens MP, Haque A, Atkins T, et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 2004;150(8):2669-76
  • Warawa J, Woods DE. Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett 2005;242(1):101-8
  • Muangsombut V, Suparak S, Pumirat P, et al. Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Arch Microbiol 2008;190(6):623-31
  • Hii C-S, Sun GW, Goh JW, et al. Interleukin-8 Induction by Burkholderia pseudomallei Can Occur without Toll-Like Receptor Signaling but Requires a Functional Type III Secretion System. J Infect Dis 2008;197(11):1537-47
  • Burtnick MN, Brett PJ, Nair V, et al. Burkholderia pseudomallei Type III Secretion System Mutants Exhibit Delayed Vacuolar Escape Phenotypes in RAW 264.7 Murine Macrophages. Infect Immun 2008;76(7):2991-3000
  • Bast A, Krause K, Schmidt IH, et al. Caspase-1-Dependent and -Independent Cell Death Pathways in Burkholderia pseudomallei Infection of Macrophages. PLoS Pathog 2014;10(3):e1003986
  • Cullinane M, Gong L, Li X, et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 2008;4(6):744-53
  • Gong L, Cullinane M, Treerat P, et al. The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis. PLoS One 2011;6(3):e17852
  • Srinon V, Muangman S, Imyaem N, et al. Comparative assessment of the intracellular survival of the Burkholderia pseudomallei bopC mutant. J Microbiol 2013;51(4):522-6
  • Pumirat P, Broek CV, Juntawieng N, et al. Analysis of the Prevalence, Secretion and Function of a Cell Cycle-Inhibiting Factor in the Melioidosis Pathogen Burkholderia pseudomallei. PLoS One 2014;9(5):e96298
  • Cui J, Yao Q, Li S, et al. Glutamine Deamidation and Dysfunction of Ubiquitin/NEDD8 Induced by a Bacterial Effector Family. Science 2009;329(5996):1215-18
  • Jubelin G, Chavez CV, Taieb F, et al. Cycle Inhibiting Factors (CIFs) Are a Growing Family of Functional Cyclomodulins Present in Invertebrate and Mammal Bacterial Pathogens. PLoS One 2009;4(3):e4855
  • Yao Q, Cui J, Zhu Y, et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc Natl Acad Sci USA 2009;106(10):3716-21
  • Suparak S, Kespichayawattana W, Haque A, et al. Multinucleated Giant Cell Formation and Apoptosis in Infected Host Cells Is Mediated by Burkholderia pseudomallei Type III Secretion Protein BipB. J Bacteriol 2005;187(18):6556-60
  • Leiman PG, Basler M, Ramagopal UA, et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 2009;106(11):4154-9
  • Basler M, Pilhofer M, Henderson GP, et al. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 2012;483(7388):182-6
  • Burtnick MN, Brett PJ, Harding SV, et al. The Cluster 1 Type VI Secretion System Is a Major Virulence Determinant in Burkholderia pseudomallei. Infect Immun 2011;79(4):1512-25
  • Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 2007;153(8):2689-99
  • Burtnick MN, Brett PJ. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc. PLoS One 2013;8(10):e76767
  • Chen Y, Wong J, Sun GW, et al. Regulation of Type VI Secretion System during Burkholderia pseudomallei Infection. Infect Immun 2011;79(8):3064-73
  • Pilatz S, Breitbach K, Hein N, et al. Identification of Burkholderia pseudomallei Genes Required for the Intracellular Life Cycle and In Vivo Virulence. Infect Immun 2006;74(6):3576-86
  • Hopf V, Göhler A, Eske-Pogodda K, et al. BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun 2014;82(5):2006-15
  • Toesca IJ, French CT, Miller JF. The type vi secretion system spike protein vgrg5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 2014;82(4):1436-44
  • Schwarz S, Singh P, Robertson JD, et al. VgrG-5 Is a Burkholderia type vi secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 2014;82(4):1445-52
  • Sun GW, Chen Y, Liu Y, et al. Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol 2010;76(3):677-89
  • Burtnick MN, DeShazer D, Nair V, et al. Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun 2010;78(1):88-99
  • Tan KS, Chen Y, Lim Y-C, et al. Suppression of Host Innate Immune Response by Burkholderia pseudomallei through the Virulence Factor TssM. J Immunol 2010;184(9):5160-71
  • Burtnick MN, Brett PJ, DeShazer D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect Immun 2014;82(8):3214-26
  • Shanks J, Burtnick MN, Brett PJ, et al. Burkholderia mallei tssM Encodes a Putative Deubiquitinase That Is Secreted and Expressed inside Infected RAW 264.7 Murine Macrophages. Infect Immun 2009;77(4):1636-48
  • DeShazer D, Brett PJ, Burtnick MN, Woods DE. molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J Bacteriol 1999;181(15):4661-4
  • Valade E, Thibault FM, Gauthier YP, et al. The pmli-pmlr quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the mpra protease. J Bacteriol 2004;186(8):2288-94
  • Korbsrisate S, Tomaras AP, Damnin S, et al. Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. Microbiology 2007;153(6):1907-15
  • Tuanyok A, Tom M, Dunbar J, Woods DE. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun 2006;74(10):5465-76
  • Singh AP, Lai S-c, Nandi T, et al. Evolutionary analysis of Burkholderia pseudomallei identifies putative novel virulence genes, including a microbial regulator of host cell autophagy. J Bacteriol 2013;195(24):5487-98
  • Cruz-Migoni A, Hautbergue GM, Artymiuk PJ, et al. A Burkholderia pseudomallei Toxin Inhibits Helicase Activity of Translation Factor eIF4A. Science 2011;334(6057):821-4
  • Biggins JB, Kang HS, Ternei MA, et al. The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. J Am Chem Soc 2014;136(26):9484-90
  • Biggins JB, Ternei MA, Brady SF. Malleilactone, a Polyketide Synthase-Derived Virulence Factor Encoded by the Cryptic Secondary Metabolome of Burkholderia pseudomallei Group Pathogens. J Am Chem Soc 2012;134(32):13192-5
  • Allwood EM, Devenish RJ, Prescott M, et al. Strategies for intracellular survival of Burkholderia pseudomallei. Front Microbiol 2011;22(2):170
  • Galyov EE, Brett PJ, DeShazer D. Molecular Insights into Burkholderia pseudomallei and Burkholderia mallei Pathogenesis. Annu Rev Microbiol 2010;64(1):495-517
  • French CT, Toesca IJ, Wu T-H, et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci 2011;108(29):12095-100
  • Sitthidet C, Korbsrisate S, Layton AN, et al. Identification of Motifs of Burkholderia pseudomallei BimA Required for Intracellular Motility, Actin Binding, and Actin Polymerization. J Bacteriol 2011;193(8):1901-10
  • Stevens MP, Stevens JM, Jeng RL, et al. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol 2005;56(1):40-53
  • Dowling AJ, Wilkinson PA, Holden MT, et al. Genome-Wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei k96243. PLoS One 2010;5(12):e15693
  • Tuanyok A, Auerbach RK, Brettin TS, et al. A Horizontal Gene Transfer Event Defines Two Distinct Groups within Burkholderia pseudomallei That Have Dissimilar Geographic Distributions. J Bacteriol 2007;189(24):9044-9
  • Stevens JM, Ulrich RL, Taylor LA, et al. Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant. J Bacteriol 2005;187(22):7857-62
  • Sitthidet C, Stevens JM, Chantratita N, et al. Prevalence and Sequence Diversity of a Factor Required for Actin-Based Motility in Natural Populations of Burkholderia Species. J Clin Microbiol 2008;46(7):2418-22
  • Sarovich DS, Price EP, Webb JR, et al. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS One 2014;9(3):e91682
  • Utaisincharoen P, Arjcharoen S, Limposuwan K, et al. Burkholderia pseudomallei RpoS regulates multinucleated giant cell formation and inducible nitric oxide synthase expression in mouse macrophage cell line (RAW 264.7). Microb Pathog 2006;40(4):184-9
  • Boddey JA, Day CJ, Flegg CP, et al. The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cell Microbiol 2007;9(2):514-31
  • Vanaporn M, Wand M, Michell SL, et al. Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei. Microbiology 2011;157(8):2392-400
  • Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 2004;182(1):96-101
  • Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S. Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch Microbiol 2003;180(6):498-502
  • Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. Regulation of the katG-dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 2003;542(1-3):17-21
  • Jangiam W, Loprasert S, Smith DR, Tungpradabkul S. Burkholderia pseudomallei RpoS regulates OxyR and the katG-dpsA operon under conditions of oxidative stress. Microbiol Immunol 2010;54(7):389-97
  • Pudla M, Limposuwan K, Utaisincharoen P. Burkholderia pseudomallei-induced expression of a negative regulator, sterile-alpha and Armadillo motif-containing protein, in mouse macrophages: a possible mechanism for suppression of the MyD88-independent pathway. Infect Immun 2011;79(7):2921-7
  • Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, et al. Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol Immunol 2001;45(4):307-13
  • Baral P, Utaisincharoen P. Involvement of signal regulatory protein alpha, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei-infected mouse macrophages. Infect Immun 2012;80(12):4223-31
  • Baral P, Utaisincharoen P. Sterile-alpha- and armadillo motif-containing protein inhibits the TRIF-dependent downregulation of signal regulatory protein alpha to interfere with intracellular bacterial elimination in Burkholderia pseudomallei-infected mouse macrophages. Infect Immun 2013;81(9):3463-71
  • Ireland PM, Marshall L, Norville I, Sarkar-Tyson M. The serine protease inhibitor Ecotin is required for full virulence of Burkholderia pseudomallei. Microb Pathog 2014;67-68:55-8
  • Norville IH, Harmer NJ, Harding SV, et al. A Burkholderia pseudomallei Macrophage Infectivity Potentiator-Like Protein Has Rapamycin-Inhibitable Peptidylprolyl Isomerase Activity and Pleiotropic Effects on Virulence. Infect Immun 2011;79(11):4299-307
  • Ireland PM, McMahon RM, Marshall LE, et al. Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (dsba) required for virulence in vivo. Antioxid Redox Signal 2014;20(4):606-17
  • Norville IH, Breitbach K, Eske-Pogodda K, et al. A novel FK-506-binding-like protein that lacks peptidyl-prolyl isomerase activity is involved in intracellular infection and in vivo virulence of Burkholderia pseudomallei. Microbiology 2011;157(9):2629-38
  • Ulrich RL, DeShazer D, Brueggemann EE, et al. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J Med Microbiol 2004;53(11):1053-64
  • Horton RE, Grant GD, Matthews B, et al. Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One 2013;8(5):e63394
  • Song Y, Xie C, Ong Y-M, et al. The BpsIR Quorum-Sensing System of Burkholderia pseudomallei. J Bacteriol 2005;187(2):785-90
  • Jones AL, DeShazer D, Woods DE. Identification and characterization of a two-component regulatory system involved in invasion of eukaryotic cells and heavy-metal resistance in Burkholderia pseudomallei. Infect Immun 1997;65(12):4972-7
  • Nierman WC, DeShazer D, Kim HS, et al. Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA 2004;101(39):14246-51
  • Hasselbring BM, Patel MK, Schell MA. Dictyostelium discoideum as a Model System for Identification of Burkholderia pseudomallei Virulence Factors. Infect Immun 2011;79(5):2079-88
  • Burtnick MN, Woods DE. Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrob Agents Chemother 1999;43(11):2648-56
  • Jones AL, Beveridge TJ, Woods DE. Intracellular survival of Burkholderia pseudomallei. Infect Immun 1996;64(3):782-90
  • Puknun A, Bolscher JG, Nazmi K, et al. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei. World J Microbiol Biotechnol 2013;29(7):1217-24
  • Kanthawong S, Bolscher JG, Veerman EC, et al. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents 2011;39(1):39-44
  • Kanthawong S, Nazmi K, Wongratanacheewin S, et al. In vitro susceptibility of Burkholderia pseudomallei to antimicrobial peptides. Int J Antimicrob Agents 2009;34(4):309-14
  • Sarovich DS, Price EP, Von Schulze AT, et al. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from australia. PLoS One 2012;7(2):e30789
  • Rholl DA, Papp-Wallace KM, Tomaras AP, et al. Molecular Investigations of PenA-mediated beta-lactam Resistance in Burkholderia pseudomallei. Front Microbiol 2011;2:139
  • Sam I-C, See KH, Puthucheary SD. Variations in Ceftazidime and Amoxicillin-Clavulanate Susceptibilities within a Clonal Infection of Burkholderia pseudomallei. J Clin Microbiol 2009;47(5):1556-8
  • Tribuddharat C, Moore RA, Baker P, Woods DE. Burkholderia pseudomallei Class A β-Lactamase Mutations That Confer Selective Resistance against Ceftazidime or Clavulanic Acid Inhibition. Antimicrob Agents Chemother 2003;47(7):2082-7
  • Chantratita N, Rholl DA, Sim B, et al. Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei. Proc Natl Aca Sci USA 2011;108(41):17165-70
  • Hayden HS, Lim R, Brittnacher MJ, et al. Evolution of Burkholderia pseudomallei in Recurrent Melioidosis. PLoS One 2012;7(5):e36507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.