1,164
Views
152
CrossRef citations to date
0
Altmetric
Reviews

Antimicrobial peptides: therapeutic potentials

, , &

References

  • Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 2009;62(1):5-16
  • Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev 2006;19(3):491-511
  • Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006;367(9524):1747-57
  • Aloush V, Navon-Venezia S, Seigman-Igra Y, et al. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2005;50(1):43-8
  • Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter. J Glob Infect Dis 2010;2(3):291-304
  • Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 2005;30(7):505-15
  • van’t Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. Antimicrobial peptides: properties and applicability. Biol Chem 2001;382(4):597-619
  • Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 2006;6(5):468-72
  • Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 2010;1(2):143-52
  • Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers 1998;47(6):415-33
  • Ganz T. The role of antimicrobial peptides in innate immunity. Integr Comp Biol 2003;43(2):300-4
  • Kai-Larsen Y, Agerberth B. The role of the multifunctional peptide LL-37 in host defense. Front Biosci 2008;13:3760-7
  • Laverty G, Gorman SP, Gilmore BF. The potential of antimicrobial peptides as biocides. Int J Mol Sci 2011;12(10):6566-96
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415(6870):389-95
  • Aoki W, Kuroda K, Ueda M. Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng 2012;114(4):365-70
  • Mygind PH, Fischer RL, Schnorr KM, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005;437(7061):975-80
  • Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Nat Acad Sci 2000;97(16):8856-61
  • Pistolesi S, Pogni R, Feix JB. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15. Biophys J 2007;93(5):1651-60
  • Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006;24(12):1551-7
  • Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 1998;16(2):82-8
  • Hancock RE. Peptide antibiotics. Lancet 1997;349(9049):418-22
  • Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers (Pept. Sci.) 2002;66:236-48
  • Dawson RM, Liu CQ. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit Rev Microbiol 2008;34(2):89-107
  • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 2008;1778(2):357-75
  • Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2007;2(1):1-33
  • Brogden KA, Ackermann M, McCray PB Jr, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 2003;22(5):465-78
  • Lazarev VN, Govorun VM. Antimicrobial peptides and their use in medicine. Appl Biochem Micro+ 2010;46(9):803-14
  • Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Pept 2013;1-15
  • Kang SJ, Kim DH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch Pharm Res 2012;35(5):409-13
  • Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila immune response. BMB Rep 2008;41(4):267-77
  • Cruz J, Ortiz C, Guzman F, et al. Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 2014;21(20):2299-21
  • Oyston PC, Fox MA, Richards SJ, Clark GC. Novel peptide therapeutics for treatment of infections. J Med Microbiol 2009;58(Pt 8):977-87
  • Moberg CL, Cohn ZA. Lauching the antibiotic era. Personal accounts of the discovery and use of the first antibiotics. Rockefeller University Press; New York: 1990
  • Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res 2004;32: Database issue D590-2
  • Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009;37: Database issue D933-7
  • Paquette DW, Waters GS, Stefanidou VL, et al. Inhibition of experimental gingivitis in beagle dogs with topical salivary histatins. J Clin Periodontol 1997;24(4):216-22
  • Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 2004;56(3):285-9
  • Hancock RE. Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs 2000;9(8):1723-9
  • Homepage of Demegen Inc. Available from: http://www.demegen.com
  • Ge Y, MacDonald D, Hait H, et al. Microbiological profile of infected diabetic foot ulcers. Diabet Med 2002;19(12):1032-4
  • Homepage of dipexium pharmaceuticals. Available from: http://www.dipexiumpharmaceuticals. com/locilex/overview
  • Melo MN, Dugourd D, Castanho MA. Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov 2006;1(2):201-7
  • Sader HS, Fedler KA, Rennie RP, et al. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 2004;48(8):3112-18
  • Roscia G, Falciani C, Bracci L, Pini A. The development of antimicrobial peptides as new antibacterial drugs. Curr Protein Pept Sci 2013;14(8):641-9
  • Carrus capital corporation announces plan of arrangement for asset spinoff. Available from: http://www.marketwatch.com/story/carrus-capital-corporation-announces-plan-of-arrangement-for-asset-spinoff-2014-02-12-141733845
  • Homepage of cutanea life sciences inc. Available from: http://www.cutanealife.com
  • Loury D, Embree JR, Steinberg DA, et al. Effect of local application of the antimicrobial peptide IB-367 on the incidence and severity of oral mucositis in hamsters. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87(5):544-51
  • Panyutich A, Shi J, Boutz PL, et al. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect Immun 1997;65(3):978-85
  • Giles FJ, Rodriguez R, Weisdorf D, et al. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk Res 2004;28(6):559-65
  • Trotti A, Garden A, Warde P, et al. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int J Radiat Oncol Biol Phys 2004;58(3):674-81
  • Donnelly JP, Bellm LA, Epstein JB, et al. Antimicrobial therapy to prevent or treat oral mucositis. Lancet Infect Dis 2003;3(7):405-12
  • Schultz H, Weiss JP. The bactericidal/permeability-increasing protein (BPI) in infection and inflammatory disease. Clin Chim Acta 2007;384(1-2):12-23
  • Domingues MM, Santos NC, Castanho MA. Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies. Curr Protein Pept Sci 2012;13(7):611-19
  • Xoma 2006 annual report. Available from: www.annualreports.com/HostedData/Annual Reports/PDF/xoma2006.pdf
  • Homepage of Xoma Corporation. Available from: http://investors.xoma.com
  • Zheng R, Yao B, Yu H, et al. Novel family of antimicrobial peptides from the skin of Rana shuchinae. Peptides 2010;31(9):1674-7
  • de Sa PB, Havens WM, Ghabrial SA. Characterization of a novel broad-spectrum antifungal protein from virus-infected Helminthosporium (Cochliobolus) victoriae. Phytopathology 2010;100(9):880-9
  • Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999;1462(1-2):71-87
  • Mylne JS, Wang CK, van der Weerden NL. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers 2010;94(5):635-46
  • Matsuzaki K, Sugishita K, Fujii N, Miyajima K. Molecular-Basis for Membrane Selectivity of an Antimicrobial Peptide, Magainin-2. Biochemistry 1995;34(10):3423-9
  • Ganz T. Defensins and host defense. Science 1999;286(5439):420-1
  • Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000;55(1):4-30
  • Tam JP, Lu YA, Yang JL. Correlations of cationic charges with salt sensitivity and microbial specificity of cystine-stabilized beta-strand antimicrobial peptides. J Biol Chem 2002;277(52):50450-6
  • Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 2006;1758(9):1184-202
  • Pakkala M, Hekim C, Soininen P, et al. Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci 2007;13(5):348-53
  • Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 2009;53(2):593-602
  • Rozek A, Powers JP, Friedrich CL, Hancock RE. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 2003;42(48):14130-8
  • Aoki W, Ueda M. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals 2013;6(8):1055-81
  • Svenson J, Stensen W, Brandsdal BO, et al. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 2008;47(12):3777-88
  • Brandenburg LO, Merres J, Albrecht LJ, et al. Antimicrobial Peptides: multifunctional Drugs for Different Applications. Polymers-Basel 2012;4(1):539-60
  • Zhang L, Falla TJ. Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 2006;7(6):653-63
  • Nguyen LT, Schibli DJ, Vogel HJ. Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci 2005;11(7):379-89
  • Papo N, Shai Y. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Biochemistry 2004;43(21):6393-403
  • Nguyen LT, Chau JK, Perry NA, et al. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 2010;5(9):1-8
  • Kang SJ, Won HS, Choi WS, Lee BJ. De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J Pept Sci 2009;15(9):583-8
  • Leite NB, da Costa LC, Dos Santos Alvares D, et al. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 2010;40(1):91-100
  • Kim H, Jang JH, Kim SC, Cho JH. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother 2013;69(1):121-32
  • Knappe D, Henklein P, Hoffmann R, Hilpert K. Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother 2010;54(9):4003-5
  • Chou HT, Kuo TY, Chiang JC, et al. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 2008;32(2):130-8
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003;55(1):27-55
  • Won HS, Kang SJ, Choi WS, Lee BJ. Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide. Mol Cells 2011;31(1):49-54
  • Henriksen JR, Etzerodt T, Gjetting T, Andresen TL. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 2014;9(3):e91007
  • Juretic D, Vukicevic D, Ilic N, et al. Computational design of highly selective antimicrobial peptides. J Chem Inf Model 2009;49(12):2873-82
  • Eckert R, He J, Yarbrough DK, et al. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 2006;50(11):3651-7
  • Tsuboi R, Matsuda K, Ko IJ, Ogawa H. Correlation between culture medium pH, extracellular proteinase activity, and cell growth of Candida albicans in insoluble stratum corneum-supplemented media. Arch Dermatol Res 1989;281(5):342-5
  • Brandelli A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem 2012;12(8):731-41
  • Ali AB, Dacheng R. Antimicrobial peptides. Pharmaceuticals 2014;6:1543-75
  • Brandelli A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem 2012;12(8):731-41
  • Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012;52:337-60
  • Danial M, van Dulmen TH, Aleksandrowicz J, et al. Site-specific PEGylation of HR2 peptides: effects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjug Chem 2012;23(8):1648-60
  • Falciani C, Lozzi L, Scali S, et al. Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase. Amino Acids 2014;46(5):1403-7
  • Hussain R, Siligardi G. Novel drug delivery system for lipophilic therapeutics of small molecule, peptide-based and protein drugs. Chirality 2010;22(Suppl 1):E44-6
  • Won HS, Seo MD, Jung SJ, et al. Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. J Med Chem 2006;49(16):4887-95
  • Faccone D, Veliz O, Corso A, et al. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. Eur J Med Chem 2013;71:31-5
  • Butt TR, Edavettal SC, Hall JP, Mattern MR. SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 2005;43(1):1-9
  • Bogomolovas J, Simon B, Sattler M, Stier G. Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 2008;64(1):16-23
  • Bommarius B, Jenssen H, Elliott M, et al. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 2010;31(11):1957-65
  • Seetha RK, M Mary VK, S Divya S, et al. Cost effective purification of intein based syntetic cationic antimicrobial peptide expressed in cold shock expression system using salt inducible E. coli GJ1158. J Microbiol Infect Dis 2014;4(1):13-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.