878
Views
30
CrossRef citations to date
0
Altmetric
Review

Henipavirus pathogenesis and antiviral approaches

&

References

  • Stone R. Epidemiology. Breaking the chain in Bangladesh. Science 2011;331(6021):1128-31
  • Eaton BT. Introduction to Current focus on Hendra and Nipah viruses. Microbes Infect 2001;3(4):277-8
  • Drexler JF, Corman VM, Müller MA, et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012;3:796
  • Marsh GA, de Jong C, Barr JA, et al. Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog 2012;8(8):e1002836
  • Wang L, Harcourt BH, Yu M, et al. Molecular biology of Hendra and Nipah viruses. Microbes Infect 2001;3(4):279-87
  • Harcourt BH, Tamin A, Ksiazek TG, et al. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 2000;271(2):334-49
  • Marsh GA, Wang L-F. Hendra and Nipah viruses: why are they so deadly? Curr Opin Virol 2012;2(3):242-7
  • Luby SP. The pandemic potential of Nipah virus. Antiviral Res 2013;100(1):38-43
  • Lam S-K. Nipah virus–a potential agent of bioterrorism? Antiviral Res 2003;57(1-2):113-19
  • Murray K, Selleck P, Hooper P, et al. A morbillivirus that caused fatal disease in horses and humans. Science 1995;268(5207):94-7
  • Broder CC, Xu K, Nikolov DB, et al. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Res 2013;100(1):8-13
  • Chua KB, Bellini WJ, Rota PA, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000;288(5470):1432-5
  • Halpin K, Mungall BA. Recent progress in henipavirus research. Comp Immunol Microbiol Infect Dis 2007;30(5-6):287-307
  • Li Y, Wang J, Hickey AC, et al. Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis 2008;14(12):1974-6
  • Iehlé C, Razafitrimo G, Razainirina J, et al. Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 2007;13(1):159-61
  • Drexler JF, Corman VM, Gloza-Rausch F, et al. Henipavirus RNA in African bats. PLoS One 2009;4(7):e6367
  • Lee B. Envelope-receptor interactions in Nipah virus pathobiology. Ann N Y Acad Sci 2007;1102:51-65
  • Institute of Epidemiology, Disease Control and Research. Available from: www.iedcr.org
  • Gurley ES, Montgomery JM, Hossain MJ, et al. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007;13(7):1031-7
  • Luby SP, Rahman M, Hossain MJ, et al. Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 2006;12(12):1888-94
  • Luby SP, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus. Clin Infect Dis 2009;49(11):1743-8
  • Harcourt BH, Lowe L, Tamin A, et al. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis 2005;11(10):1594-7
  • Ching PKG, de los Reyes VC, Sucaldito MN, et al. Outbreak of Henipavirus Infection, Philippines, 2014. Emerg Infect Dis 2015.21(2). Available from: http://wwwnc.cdc.gov/eid/article/21/2/14-1433_article
  • Rockx B, Bossart KN, Feldmann F, et al. A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 2010;84(19):9831-9
  • Rockx B, Brining D, Kramer J, et al. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 2011;85(15):7658-71
  • Bossart KN, Zhu Z, Middleton D, et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 2009;5(10):e1000642
  • De Wit E, Prescott J, Falzarano D, et al. Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog 2014;10(3):e1004001
  • Chua KB, Lam SK, Goh KJ, et al. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect 2001;42(1):40-3
  • Escaffre O, Borisevich V, Carmical JR, et al. Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 2013;87(6):3284-94
  • Bossart KN, Wang L-F, Flora MN, et al. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 2002;76(22):11186-98
  • Negrete OA, Levroney EL, Aguilar HC, et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005;436(7049):401-5
  • Negrete OA, Wolf MC, Aguilar HC, et al. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2006;2(2):e7
  • Bonaparte MI, Dimitrov AS, Bossart KN, et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci USA 2005;102(30):10652-7
  • Lawrence P, Escudero Pérez B, Drexler JF, et al. Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of human, simian and bat cell lines. Virus Res 2014;181:77-80
  • Pernet O, Pohl C, Ainouze M, et al. Nipah virus entry can occur by macropinocytosis. Virology 2009;395(2):298-311
  • Stachowiak B, Weingartl HM. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells. PLoS One 2012;7(1):e30855
  • Mathieu C, Pohl C, Szecsi J, et al. Nipah virus uses leukocytes for efficient dissemination within a host. J Virol 2011;85(15):7863-71
  • Gupta M, Lo MK, Spiropoulou CF. Activation and cell death in human dendritic cells infected with Nipah virus. Virology 2013;441(1):49-56
  • Marianneau P, Guillaume V, Wong T, et al. Experimental infection of squirrel monkeys with nipah virus. Emerg Infect Dis 2010;16(3):507-10
  • Akiyama H, Miller C, Patel HV, et al. Virus particle release from glycosphingolipid-enriched microdomains is essential for dendritic cell-mediated capture and transfer of HIV-1 and henipavirus. J Virol 2014;88(16):8813-25
  • Weingartl H, Czub S, Copps J, et al. Invasion of the central nervous system in a porcine host by nipah virus. J Virol 2005;79(12):7528-34
  • Munster VJ, Prescott JB, Bushmaker T, et al. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2012;2:736
  • Wong KT, Shieh W-J, Kumar S, et al. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002;161(6):2153-67
  • Hossain MJ, Gurley ES, Montgomery JM, et al. Clinical presentation of nipah virus infection in Bangladesh. Clin Infect Dis 2008;46(7):977-84
  • Chong HT, Kamarulzaman A, Tan CT, et al. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001;49(6):810-13
  • Wong KT, Robertson T, Ong BB, et al. Human Hendra virus infection causes acute and relapsing encephalitis. Neuropathol Appl Neurobiol 2009;35(3):296-305
  • Mathieu C, Legras-Lachuer C, Horvat B. Transcriptome signature of Nipah virus infected endothelial cells [Internet]. In: Amezcua-Guerra LM, editor. Advances in the etiology, pathogenesis and pathology of vasculitis. InTech; 2011. Available from: http://www.intechopen.com/books/advances-in-the-etiology-pathogenesis-and-pathology-of-vasculitis/transcriptome-signature-of-nipah-virus-infected-endothelial-cells
  • Chua KB, Goh KJ, Wong KT, et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999;354(9186):1257-9
  • Sejvar JJ, Hossain J, Saha SK, et al. Long-term neurological and functional outcome in Nipah virus infection. Ann Neurol 2007;62(3):235-42
  • Ng B-Y, Lim CCT, Yeoh A, Lee WL. Neuropsychiatric sequelae of Nipah virus encephalitis. J Neuropsychiatry Clin Neurosci 2004;16(4):500-4
  • Tan CT, Goh KJ, Wong KT, et al. Relapsed and late-onset Nipah encephalitis. Ann Neurol 2002;51(6):703-8
  • Suhailah Abdullah L-YC. Late-onset Nipah virus encephalitis 11 years after the initial outbreak: a case report. Neurol Asia 2012;17:71-4
  • O’Sullivan JD, Allworth AM, Paterson DL, et al. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 1997;349(9045):93-5
  • Goodbourn S, Randall RE. The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 2009;29(9):539-47
  • Basler CF. Nipah and hendra virus interactions with the innate immune system. Curr Top Microbiol Immunol 2012;359:123-52
  • Enchéry F, Horvat B. Recent challenges in understanding Henipavirus immunopathogenesis: role of nonstructural viral proteins. Future Virol 2014;9(6):527-30
  • Sleeman K, Bankamp B, Hummel KB, et al. The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 2008;89(Pt 5):1300-8
  • Rodriguez JJ, Parisien J-P, Horvath CM. Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J Virol 2002;76(22):11476-83
  • Rodriguez JJ, Wang L-F, Horvath CM. Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. J Virol 2003;77(21):11842-5
  • Shaw ML, García-Sastre A, Palese P, Basler CF. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 2004;78(11):5633-41
  • Shaw ML, Cardenas WB, Zamarin D, et al. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 2005;79(10):6078-88
  • Ludlow LE, Lo MK, Rodriguez JJ, et al. Henipavirus V protein association with Polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion. J Virol 2008;82(13):6259-71
  • Kulkarni S, Volchkova V, Basler CF, et al. Nipah virus edits its P gene at high frequency to express the V and W proteins. J Virol 2009;83(8):3982-7
  • Ciancanelli MJ, Volchkova VA, Shaw ML, et al. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J Virol 2009;83(16):7828-41
  • Park M-S, Shaw ML, Muñoz-Jordan J, et al. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 2003;77(2):1501-11
  • Yoneda M, Guillaume V, Sato H, et al. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS One 2010;5(9):e12709
  • Mathieu C, Guillaume V, Volchkova VA, et al. Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence. J Virol 2012;86(19):10766-75
  • Lo MK, Miller D, Aljofan M, et al. Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 2010;404(1):78-88
  • Mathieu C, Guillaume V, Sabine A, et al. Lethal Nipah virus infection induces rapid overexpression of CXCL10. PLoS One 2012;7(2):e32157
  • Goh KJ, Tan CT, Chew NK, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000;342(17):1229-35
  • Wong KT, Shieh WJ, Zaki SR, Tan CT. Nipah virus infection, an emerging paramyxoviral zoonosis. Springer Semin Immunopathol 2002;24(2):215-28
  • Wong SC, Ooi MH, Wong MN, et al. Late presentation of Nipah virus encephalitis and kinetics of the humoral immune response. J Neurol Neurosurg Psychiatry 2001;71(4):552-4
  • Ploquin A, Szécsi J, Mathieu C, et al. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis 2013;207(3):469-78
  • Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models. Pathogens 2013;2(2):264-87
  • Wong KT, Grosjean I, Brisson C, et al. A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003;163(5):2127-37
  • Guillaume V, Wong KT, Looi RY, et al. Acute Hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 2009;387(2):459-65
  • Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol 2010;91(Pt 3):765-72
  • Guillaume V, Contamin H, Loth P, et al. Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 2004;78(2):834-40
  • Pallister J, Middleton D, Crameri G, et al. Chloroquine administration does not prevent Nipah virus infection and disease in ferrets. J Virol 2009;83(22):11979-82
  • Mungall BA, Middleton D, Crameri G, et al. Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol 2006;80(24):12293-302
  • Clayton BA, Middleton D, Bergfeld J, et al. Transmission routes for nipah virus from Malaysia and Bangladesh. Emerg Infect Dis 2012;18(12):1983-93
  • Dups J, Middleton D, Yamada M, et al. A new model for Hendra virus encephalitis in the mouse. PLoS One 2012;7(7):e40308
  • Dups J, Middleton D, Long F, et al. Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh. Virol J 2014;11:102
  • Dhondt KP, Mathieu C, Chalons M, et al. Type I interferon signaling protects mice from lethal henipavirus infection. J Infect Dis 2013;207(1):142-51
  • Geisbert TW, Daddario-DiCaprio KM, Hickey AC, et al. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One 2010;5(5):e10690
  • Bossart KN, Rockx B, Feldmann F, et al. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci Transl Med 2012;4(146):146ra107
  • Georges-Courbot MC, Contamin H, Faure C, et al. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 2006;50(5):1768-72
  • Playford EG, McCall B, Smith G, et al. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg Infect Dis 2010;16(2):219-23
  • Virtue ER, Marsh GA, Wang L-F. Interferon signaling remains functional during henipavirus infection of human cell lines. J Virol 2010;85(8):4031-34
  • Porotto M, Orefice G, Yokoyama CC, et al. Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy. J Virol 2009;83(10):5148-55
  • Elshabrawy HA, Fan J, Haddad CS, et al. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J Virol 2014;88(8):4353-65
  • Niedermeier S, Singethan K, Rohrer SG, et al. A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion. J Med Chem 2009;52(14):4257-65
  • Talekar A, Pessi A, Glickman F, et al. Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment. PLoS One 2012;7(3):e30538
  • Levroney EL, Aguilar HC, Fulcher JA, et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 2005;175(1):413-20
  • Garner OB, Aguilar HC, Fulcher JA, et al. Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 2010;6(7):e1000993
  • Aljofan M, Sganga ML, Lo MK, et al. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro. Virol J 2009;6:187
  • Aljofan M, Lo MK, Rota PA, et al. Off label antiviral therapeutics for henipaviruses: new light through old windows. J Antivir Antiretrovir 2010;2(1):1-10
  • Tigabu B, Rasmussen L, White EL, et al. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. Assay Drug Dev Technol 2014;12(3):155-61
  • Yabukarski F, Lawrence P, Tarbouriech N, et al. Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nat Struct Mol Biol 2014;21(9):754-9
  • Porotto M, Yi F, Moscona A, LaVan DA. Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus. PLoS One 2011;6(3):e16874
  • Mungall BA, Schopman NCT, Lambeth LS, Doran TJ. Inhibition of Henipavirus infection by RNA interference. Antiviral Res 2008;80(3):324-31
  • McCaskill JL, Marsh GA, Monaghan P, et al. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation. PLoS One 2013;8(5):e64360
  • Guillaume V, Contamin H, Loth P, et al. Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J Virol 2006;80(4):1972-8
  • Zhu Z, Dimitrov AS, Bossart KN, et al. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol 2006;80(2):891-9
  • Zhu Z, Bossart KN, Bishop KA, et al. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis 2008;197(6):846-53
  • Bossart KN, Geisbert TW, Feldmann H, et al. A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med 2011;3(105):105ra103
  • Pager CT, Dutch RE. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol 2005;79(20):12714-20
  • Pager CT, Craft WW, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006;346(2):251-7
  • Popa A, Carter JR, Smith SE, et al. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 2012;86(6):3014-26
  • Diederich S, Moll M, Klenk H-D, Maisner A. The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 2005;280(33):29899-903
  • Porotto M, Devito I, Palmer SG, et al. Spring-loaded model revisited: paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein. J Virol 2011;85(24):12867-80
  • Porotto M, Doctor L, Carta P, et al. Inhibition of hendra virus fusion. J Virol 2006;80(19):9837-49
  • Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998;4(11):1302-7
  • Kilby JM, Lalezari JP, Eron JJ, et al. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses 2002;18(10):685-93
  • Weiss CD. HIV-1 gp41: mediator of fusion and target for inhibition. AIDS Rev 2003;5(4):214-21
  • Bossart KN, Mungall BA, Crameri G, et al. Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein. Virol J 2005;2:57
  • Porotto M, Carta P, Deng Y, et al. Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. J Virol 2007;81(19):10567-74
  • Porotto M, Rockx B, Yokoyama CC, et al. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog 2010;6(10):e1001168
  • Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001;40(7):539-51
  • Pessi A, Langella A, Capitò E, et al. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity. PLoS One 2012;7(5):e36833
  • Welsch JC, Talekar A, Mathieu C, et al. Fatal measles virus infection prevented by brain-penetrant fusion inhibitors. J Virol 2013;87(24):13785-94
  • Mathieu C, Huey D, Jurgens E, et al. Prevention of Measles Infection by intranasal delivery of fusion inhibitory peptides. J Virol 2014;89(2):1143-55
  • Bird GH, Boyapalle S, Wong T, et al. Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection. J Clin Invest 2014;124(5):2113-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.