173
Views
26
CrossRef citations to date
0
Altmetric
Review

Coxsackievirus-induced myocarditis: new trends in treatment

, , , , &
Pages 641-650 | Published online: 10 Jan 2014

References

  • Leonard EG. Viral myocarditis. Pediatr. Infect. Dis. J. 23, 665–666 (2004).
  • D’Ambrosio A, Patti G, Manzoli A et al. The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart 85, 499–504 (2001).
  • Kearney MT, Cotton JM, Richardson PJ, Shah AM. Viral myocarditis and dilated cardiomyopathy: mechanisms, manifestations, and management. Postgrad. Med. J. 77, 4–10 (2001).
  • Grist NR, Reid D. Epidemiology of viral infections of the heart. In: Viral Infections of the Heart. Banatvala JE (Ed.), Edward Arnold, London, UK, 23–31 (1993).
  • Matsumori A. Hepatitis C virus infection and cardiomyopathies. Circ. Res. 96, 144–147 (2005).
  • Seong IW, Choe SC, Jeon ES. Fulminant coxsackieviral myocarditis. N. Engl. J. Med. 345, 379 (2001).
  • Shafren DR. Viral cell entry induced by cross-linked decay-accelerating factor. J. Virol. 72, 9407–9412 (1998).
  • He Y, Chipman PR, Howitt J et al. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nature Struct. Biol. 8, 874–878 (2001).
  • Pevear DC, Tull TM, Seipel ME, Groarke JM. Activity of pleconaril against enteroviruses. Antimicrob. Agents Chemother. 43, 2109–2115 (1999).
  • Aradottir E, Alonso EM, Shulman ST. Severe neonatal enteroviral hepatitis treated with pleconaril. Pediatr. Infect. Dis. J. 20, 457–459 (2001).
  • Rotbart HA, Webster AD. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin. Infect. Dis. 32, 228–235 (2001).
  • Yanagawa B, Spiller OB, Choy J et al. Coxsackievirus B3-associated myocardial pathology and viral load reduced by recombinant soluble human decay-accelerating factor in mice. Lab. Invest. 83, 75–85 (2003).
  • Yanagawa B, Spiller OB, Proctor DG et al. Soluble recombinant coxsackievirus and adenovirus receptor abrogates coxsackievirus B3-mediated pancreatitis and myocarditis in mice. J. Infect. Dis. 189, 1431–1439 (2004).
  • Badger J, Minor I, Kremer MJ et al. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc. Natl Acad. Sci. USA 85, 3304–3308 (1988).
  • Woods MG, Diana GD, Rogge MC et al. In vitro and in vivo activities of WIN 54954, a new broad-spectrum antipicornavirus drug. Antimicrob. Agents Chemother. 33, 2069–2074 (1989).
  • Fohlman J, Pauksen K, Hyypia T et al. Antiviral treatment with WIN 54954 reduces mortality in murine coxsackievirus B3 myocarditis. Circulation 94, 2254–2259 (1996).
  • Chern JH, Shia KS, Hsu TA et al. Design, synthesis, and structure–activity relationships of pyrazolo[3,4 d]pyrimidines: a novel class of potent enterovirus inhibitors. Bioorg. Med. Chem. Lett. 14, 2519–2525 (2004).
  • Crooke ST. Progress in antisense technology. Ann. Rev. Med. 55, 61–95 (2004).
  • Kurreck J, Wyszko E, Gillen C, Erdmann VA. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 30, 1911–1918 (2002).
  • Mizuta T, Fujiwara M, Hatta T et al. Antisense oligonucleotides directed against the viral RNA polymerase gene enhance survival of mice infected with influenza A. Nature Biotechnol. 17, 583–587 (1999).
  • Lisziewicz J, Sun D, Klotman M et al. Specific inhibition of human immunodeficiency virus type 1 replication by antisense oligonucleotides: an in vitro model for treatment. Proc. Natl Acad. Sci. USA 89, 11209–11213 (1992).
  • Marwick C. First ‘antisense’ drug will treat CMV retinitis. J. Am. Med. Assoc. 280, 871 (1998).
  • Filmore D. An NDA withdrawal signals another setback, but hope remains for next-generation drugs. Mod. Drug Discov. 6, 49–50 (2004).
  • Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nature Rev. Drug Discov. 1, 503–514 (2002).
  • Yang D, Wilson JE, Anderson DR et al. In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5´ untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology 228, 63–73 (1997).
  • Liu Z, Carthy CM, Cheung P et al. Structural and functional analysis of the 5´ untranslated region of coxsackievirus B3 RNA: in vivo translational and infectivity studies of full-length mutants. Virology 265, 206–217 (1999).
  • Cheung P, Zhang M, Yuan J et al. Specific interactions of HeLa cell proteins with coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5' untranslated region. Virus Res. 90, 23–36 (2002).
  • Yuan J, Cheung PK, Zhang H et al. A phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts. Lab. Invest. 84, 703–714 (2004).
  • Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
  • Vance V, Vaucheret H. RNA silencing in plants – defense and counterdefense. Science 292, 2277–2280 (2001).
  • Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J. Virol. 76, 9225–9231 (2002).
  • Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114 (2000).
  • Williams BR. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans. 25, 509–513 (1997).
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).
  • McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002).
  • Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002).
  • Yuan J, Cheung PK, Zhang HM, Chau D, Yang D. Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J. Virol. 79, 2151–2159 (2005).
  • Ge Q, McManus MT, Nguyen T et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl Acad. Sci. USA 100, 2718–2723 (2003).
  • Novina CD, Murray MF, Dykxhoorn DM et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002).
  • Das AT, Brummelkamp TR, Westerhout EM et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 78, 2601–2605 (2004).
  • Ji J, Wernli M, Klimkait T, Erb P. Enhanced gene silencing by the application of multiple specific small interfering RNAs. FEBS Lett. 552, 247–252 (2003).
  • Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766 (2002).
  • Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 11, 50–55 (2005).
  • Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99, 1091–1100 (1999).
  • Miyamoto T, Matsumori A, Hwang MW et al. Therapeutic effects of FTY720, a new immunosuppressive agent, in a murine model of acute viral myocarditis. J. Am. Coll. Cardiol. 37, 1713–1718 (2001).
  • Kovarik JM, Schmouder RL, Slade AJ. Overview of FTY720 clinical pharmacokinetics and pharmacology. Ther. Drug Monit. 26, 585–587 (2004).
  • Tedesco-Silva H, Mourad G, Kahan BD et al. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation 77, 1826–1833 (2004).
  • Chiba K, Yanagawa Y, Masubuchi Y et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J. Immunol. 160, 5037–5044 (1998).
  • Wang M, Liu S, Ouyang N et al. Protective effects of FTY720 on chronic allograft nephropathy by reducing late lymphocytic infiltration. Kidney Int. 66, 1248–1256 (2004).
  • Furusho K, Kamiya T, Nakano H et al. High-dose intravenous γ-globulin for Kawasaki disease. Lancet 2, 1055–1058 (1984).
  • Latov N, Chaudhry V, Koski CL et al. Use of intravenous γ-globulins in neuroimmunologic diseases. J. Allergy Clin. Immunol. 108, S126–S132 (2001).
  • Weller AH, Hall M, Huber SA. Polyclonal immunoglobulin therapy protects against cardiac damage in experimental coxsackievirus-induced myocarditis. Eur. Heart J. 13, 115–119 (1992).
  • Takada H, Kishimoto C, Hiraoka Y. Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model. Antiviral and anti-inflammatory effects. Circulation 92, 1604–1611 (1995).
  • Kishimoto C, Takamatsu N, Kawamata H, Shinohara H, Ochiai H. Immunoglobulin treatment ameliorates murine myocarditis associated with reduction of neurohumoral activity and improvement of extracellular matrix change. J. Am. Coll. Cardiol. 36, 1979–1984 (2000).
  • Gullestad L, Aass H, Fjeld JG et al. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103, 220–225 (2001).
  • Drucker NA, Colan SD, Lewis AB et al. γ-globulin treatment of acute myocarditis in the pediatric population. Circulation 89, 252–257 (1994).
  • Kishimoto C, Shioji K, Kinoshita M et al. Treatment of acute inflammatory cardiomyopathy with intravenous immunoglobulin ameliorates left ventricular function associated with suppression of inflammatory cytokines and decreased oxidative stress. Int. J. Cardiol. 91, 173–178 (2003).
  • McNamara DM, Holubkov R, Starling RC et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation 103, 2254–2259 (2001).
  • Fairweather D, Frisancho-Kiss S, Yusung SA et al. Interferon-γ protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-β 1, interleukin-1 β, and interleukin-4 in the heart. Am. J. Pathol. 165, 1883–1894 (2004).
  • Henke A, Zell R, Martin U, Stelzner A. Direct interferon-γ-mediated protection caused by a recombinant coxsackievirus B3. Virology 315, 335–344 (2003).
  • Daliento L, Calabrese F, Tona F et al. Successful treatment of enterovirus-induced myocarditis with interferon-α. J. Heart Lung Transplant. 22, 214–217 (2003).
  • Miric M, Vasiljevic J, Bojic M et al. Long-term follow up of patients with dilated heart muscle disease treated with human leukocytic interferon-α or thymic hormones initial results. Heart 75, 596–601 (1996).
  • Kuhl U, Pauschinger M, Schwimmbeck PL et al. Interferon-β treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107, 2793–2798 (2003).
  • Padalko E, Nuyens D, De Palma A et al. The interferon inducer ampligen [poly(I) poly(C12U)] markedly protects mice against coxsackie B3 virus-induced myocarditis. Antimicrob. Agents Chemother. 48, 267–274 (2004).
  • Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553–14556 (1993).
  • Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).
  • Luo H, Yanagawa B, Zhang J et al. Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J. Virol. 76, 3365–3373 (2002).
  • Opavsky MA, Martino T, Rabinovitch M et al. Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J. Clin. Invest. 109, 1561–1569 (2002).
  • Liu P, Aitken K, Kong YY et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nature Med. 6, 429–434 (2000).
  • Pearson G, Robinson F, Beers Gibson T et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).
  • Yasukawa H, Yajima T, Duplain H et al. The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Invest. 111, 469–478 (2003).
  • Jones WK, Brown M, Ren X, He S, McGuinness M. NF-κB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc. Toxicol. 3, 229–254 (2003).
  • Goren N, Cuenca J, Martin-Sanz P, Bosca L. Attenuation of NF-κB signalling in rat cardiomyocytes at birth restricts the induction of inflammatory genes. Cardiovasc. Res. 64, 289–297 (2004).
  • Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001–2007 (1999).
  • Packer M, Bristow MR, Cohn JN et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. US Carvedilol Heart Failure Study Group. N. Engl. J. Med. 334, 1349–1355 (1996).
  • Kukin ML, Kalman J, Charney RH et al. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation 99, 2645–2651 (1999).
  • Poole-Wilson PA, Swedberg K, Cleland JG et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362, 7–13 (2003).
  • Tschope C, Westermann D, Steendijk P et al. Hemodynamic characterization of left ventricular function in experimental coxsackieviral myocarditis: effects of carvedilol and metoprolol. Eur. J. Pharmacol. 491, 173–179 (2004).
  • Nishio R, Shioi T, Sasayama S, Matsumori A. Carvedilol increases the production of interleukin-12 and interferon-γ and improves the survival of mice infected with the encephalomyocarditis virus. J. Am. Coll. Cardiol. 41, 340–345 (2003).
  • Yuan Z, Shioji K, Kihara Y et al. Cardioprotective effects of carvedilol on acute autoimmune myocarditis: anti-inflammatory effects associated with antioxidant property. Am. J. Physiol. Heart Circ. Physiol. 286, H83–H90 (2004).
  • Suzuki H, Matsumori A, Matoba Y et al. Enhanced expression of superoxide dismutase messenger RNA in viral myocarditis. An SH-dependent reduction of its expression and myocardial injury. J. Clin. Invest. 91, 2727–2733 (1993).
  • Yuan Z, Kishimoto C, Shioji K et al. Temocapril treatment ameliorates autoimmune myocarditis associated with enhanced cardiomyocyte thioredoxin expression. Mol. Cell. Biochem. 248, 185–192 (2003).
  • Yamamoto K, Shioi T, Uchiyama K et al. Attenuation of virus-induced myocardial injury by inhibition of the angiotensin II type 1 receptor signal and decreased nuclear factor-κB activation in knockout mice. J. Am. Coll. Cardiol. 42, 2000–2006 (2003).
  • Tanaka A, Matsumori A, Wang W, Sasayama S. An angiotensin II receptor antagonist reduces myocardial damage in an animal model of myocarditis. Circulation 90, 2051–2055 (1994).
  • Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P. Randomised investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351, 1091–1093 (1998).
  • Saura M, Zaragoza C, McMillan A et al. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10, 21–28 (1999).
  • Padalko E, Ohnishi T, Matsushita K et al. Peroxynitrite inhibition of coxsackievirus infection by prevention of viral RNA entry. Proc. Natl Acad. Sci. USA 101, 11731–11736 (2004).
  • Zell R, Markgraf R, Schmidtke M et al. Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice. Med. Microbiol. Immunol. (Berl). 193, 91–100 (2004).
  • Zhang F, Chen Y, Yang Z et al. Cellular cardiomyoplasty for a patient with heart failure. Cardiovasc. Radiat. Med. 4, 43–46 (2003).
  • Siminiak T, Kalawski R, Fiszer D et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am. Heart J. 148, 531–537 (2004).
  • Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361, 45–46 (2003).
  • Chachques JC, Acar C, Herreros J et al. Cellular cardiomyoplasty: clinical application. Ann. Thorac. Surg. 77, 1121–1130 (2004).
  • Wang D, Coscoy L, Zylberberg M et al. Microarray-based detection and genotyping of viral pathogens. Proc. Natl Acad. Sci. USA 99, 15687–15692 (2002).
  • Boriskin YS, Rice PS, Stabler RA et al. DNA microarrays for virus detection in cases of central nervous system infection. J. Clin. Microbiol. 42, 5811–5818 (2004).
  • Striebel HM, Birch-Hirschfeld E, Egerer R, Foldes-Papp Z. Virus diagnostics on microarrays. Curr. Pharm. Biotechnol. 4, 401–415 (2003).
  • Nikolaeva-Glomb L, Galabov AS. Synergistic drug combinations against the in vitro replication of coxsackie B1 virus. Antiviral Res. 62, 9–19 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.