67
Views
3
CrossRef citations to date
0
Altmetric
Review

Main adult herpes virus infections of the CNS

&
Pages 663-678 | Published online: 10 Jan 2014

References

  • Studahl M, Hagberg L, Rekabdar E et al. Herpesvirus DNA detection in cerebral spinal fluid: differences in clinical presentation between α-, β-, and γ-herpesviruses. Scand. J. Infect. Dis. 32, 237–248 (2000).
  • Roizman B, Carmichael LE, Deinhardt F et al. Herpesviridae. Definition, provisional nomenclature, and taxonomy. The Herpesvirus Study Group, the International Committee on Taxonomy of Viruses. Intervirology 16, 201–217 (1981).
  • Jeffery DR, Mandler RN, Davis LE. Transverse myelitis. Retrospective analysis of 33 cases, with differentiation of cases associated with multiple sclerosis and parainfectious events. Arch. Neurol. 50, 532–535 (1993).
  • Gilden DH, Kleinschmidt-DeMasters BK, LaGuardia JJ et al. Neurologic complications of the reactivation of varicella-zoster virus. N. Engl. J. Med. 342, 635–645 (2000).
  • Maschke M, Kastrup O, Diener HC. CNS manifestations of cytomegalovirus infections: diagnosis and treatment. CNS Drugs 16, 303–315 (2002).
  • Denes E, Magy L, Pradeau K et al. Successful treatment of human herpesvirus 6 encephalomyelitis in immunocompetent patient. Emerg. Infect. Dis. 10, 729–731 (2004).
  • Majid A, Galetta SL, Sweeney CJ et al. Epstein–Barr virus myeloradiculitis and encephalomyeloradiculitis. Brain 125, 159–165 (2002).
  • Griffiths P. Cytomegalovirus infection of the central nervous system. Herpes 11(Suppl. 2), 95A–104A (2004).
  • Gilden D. Varicella zoster virus and central nervous system syndromes. Herpes 11(Suppl. 2), 89A–94A (2004).
  • Echevarria JM, Casas I, Martinez-Martin P. Infections of the nervous system caused by varicella-zoster virus: a review. Intervirology 40, 72–84 (1997).
  • Devinsky O, Cho ES, Petito CK et al. Herpes zoster myelitis. Brain 114(Pt. 3), 1181–1196 (1991).
  • Murthy JM, Reddy JJ, Meena AK et al. Acute transverse myelitis: MR characteristics. Neurol. India 47, 290–293 (1999).
  • Corey L, Spear PG. Infections with herpes simplex viruses (2). N. Engl. J. Med. 314, 749–757 (1986).
  • Nowak DA, Boehmer R, Fuchs HH. A retrospective clinical, laboratory and outcome analysis in 43 cases of acute aseptic meningitis. Eur. J. Neurol. 10, 271–280 (2003).
  • Mollaret P. La méningite endothélio-leucocytaire multirécurrente bénigne: syndrome nouveau ou maladie nouvelle? Rev. Neurol. (Paris) 76, 57–76 (1944).
  • Mirakhur B, McKenna M. Recurrent herpes simplex Type 2 virus (Mollaret) meningitis. J. Am. Board Fam. Pract. 17, 303–305 (2004).
  • Tyler KL, Adler D. Twenty-eight years of benign recurring Mollaret meningitis. Arch. Neurol. 40, 42–43 (1983).
  • Stoppe G, Stark E, Patzold U. Mollaret’s meningitis: CSF-immunocytological examinations. J. Neurol. 234, 103–106 (1987).
  • Bergstrom T, Vahlne A, Alestig K et al. Primary and recurrent herpes simplex virus Type 2-induced meningitis. J. Infect. Dis. 162, 322–330 (1990).
  • Aurelius E, Forsgren M, Gille E et al. Neurologic morbidity after herpes simplex virus Type 2 meningitis: a retrospective study of 40 patients. Scand. J. Infect. Dis. 34, 278–283 (2002).
  • Tyler KL. Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes 11(Suppl. 2), 57A–64A (2004).
  • Kupila L, Vainionpaa R, Vuorinen T et al. Recurrent lymphocytic meningitis: the role of herpesviruses. Arch. Neurol. 61, 1553–1557 (2004).
  • Lortholary O, Rozenberg F, Perronne C et al. Herpes simplex virus Type 2 DNA in cerebrospinal fluid of a woman with recurrent meningitis. Clin. Infect. Dis. 17, 941–942 (1993).
  • Picard FJ, Dekaban GA, Silva J et al. Mollaret’s meningitis associated with herpes simplex Type 2 infection. Neurology 43, 1722–1727 (1993).
  • Jensenius M, Myrvang B, Storvold G et al. Herpes simplex virus Type 2 DNA detected in cerebrospinal fluid of 9 patients with Mollaret’s meningitis. Acta Neurol. Scand. 98, 209–212 (1998).
  • Chan TY, Parwani AV, Levi AW et al. Mollaret’s meningitis: cytopathologic analysis of fourteen cases. Diagn. Cytopathol. 28, 227–231 (2003).
  • Hausfater P, Fillet AM, Rozenberg F et al. Prevalence of viral infection markers by polymerase chain reaction amplification and interferon-α measurements among patients undergoing lumbar puncture in an emergency department. J. Med. Virol. 73, 137–146 (2004).
  • Martinez-Martin P, Herreros A, Tellez A et al. Meningitis of viral or possible viral etiology in adults: study of 325 cases. Neurologia 5, 4–10 (1990).
  • Davison KL, Crowcroft NS, Ramsay ME et al. Viral encephalitis in England, 1989–1998: what did we miss? Emerg. Infect. Dis. 9, 234–240 (2003).
  • Fomsgaard A, Kirkby N, Jensen IP et al. Routine diagnosis of herpes simplex virus (HSV) encephalitis by an internal DNA controlled HSV PCR and an IgG-capture assay for intrathecal synthesis of HSV antibodies. Clin. Diagn. Virol. 9, 45–56 (1998).
  • Najioullah F, Bosshard S, Thouvenot D et al. Diagnosis and surveillance of herpes simplex virus infection of the central nervous system. J. Med. Virol. 61, 468–473 (2000).
  • Whitley RJ, Lakeman F. Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin. Infect. Dis. 20, 414–420 (1995).
  • Raschilas F, Wolff M, Delatour F et al. Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin. Infect. Dis. 35, 254–260 (2002).
  • Kennedy PG, Chaudhuri A. Herpes simplex encephalitis. J. Neurol. Neurosurg. Psychiatry 73, 237–238 (2002).
  • Mitchell BM, Stevens JG. Neuroinvasive properties of herpes simplex virus Type 1 glycoprotein variants are controlled by the immune response. J. Immunol. 156, 246–255 (1996).
  • Irie H, Kiyoshi A, Koyama AH. A role for apoptosis induced by acute herpes simplex virus infection in mice. Int. Rev. Immunol. 23, 173–185 (2004).
  • DeBiasi RL, Kleinschmidt-DeMasters BK, Richardson-Burns S et al. Central nervous system apoptosis in human herpes simplex virus and cytomegalovirus encephalitis. J. Infect. Dis. 186, 1547–1557 (2002).
  • Perkins D, Gyure KA, Pereira EF et al. Herpes simplex virus Type 1-induced encephalitis has an apoptotic component associated with activation of c-Jun N-terminal kinase. J. Neurovirol. 9, 101–111 (2003).
  • Ben-Hur T, Cialic R, Weidenfeld J. Virus and host factors that mediate the clinical and behavioral signs of experimental herpetic encephalitis. A short auto-review. Acta Microbiol. Immunol. Hung. 50, 443–451 (2003).
  • Albertyn LE. Magnetic resonance imaging in herpes simplex encephalitis. Australas. Radiol. 34, 117–121 (1990).
  • Gasecki AP, Steg RE. Correlation of early MRI with CT scan, EEG, and CSF: analyses in a case of biopsy-proven herpes simplex encephalitis. Eur. Neurol. 31, 372–375 (1991).
  • Domingues RB, Fink MC, Tsanaclis AM et al. Diagnosis of herpes simplex encephalitis by magnetic resonance imaging and polymerase chain reaction assay of cerebrospinal fluid. J. Neurol. Sci. 157, 148–153 (1998).
  • Zimmerman RD, Russell EJ, Leeds NE et al. CT in the early diagnosis of herpes simplex encephalitis. Am. J. Roentgenol. 134, 61–66 (1980).
  • Tien RD, Felsberg GJ, Osumi AK. Herpesvirus infections of the CNS: MR findings. Am. J. Roentgenol. 161, 167–176 (1993).
  • Sener RN. Herpes simplex encephalitis: diffusion MR imaging findings. Comput. Med. Imaging Graph. 25, 391–397 (2001).
  • Heiner L, Demaerel P. Diffusion-weighted MR imaging findings in a patient with herpes simplex encephalitis. Eur. J. Radiol. 45, 195–198 (2003).
  • Kuker W, Nagele T, Schmidt F et al. Diffusion-weighted MRI in herpes simplex encephalitis: a report of three cases. Neuroradiology 46, 122–125 (2004).
  • McCabe K, Tyler K, Tanabe J. Diffusion-weighted MRI abnormalities as a clue to the diagnosis of herpes simplex encephalitis. Neurology 61, 1015–1016 (2003).
  • Burke JW, Mathews VP, Elster AD et al. Contrast-enhanced magnetization transfer saturation imaging improves MR detection of herpes simplex encephalitis. Am. J. Neuroradiol. 17, 773–776 (1996).
  • Ch’ien LT, Boehm RM, Robinson H et al. Characteristic early electroencephalographic changes in herpes simplex encephalitis. Arch. Neurol. 34, 361–364 (1977).
  • Lai CW, Gragasin ME. Electroencephalography in herpes simplex encephalitis. J. Clin. Neurophysiol. 5, 87–103 (1988).
  • Beneto A, Gomez E, Rubio P et al. Periodical EEG pattern modifications in herpetic encephalitis treated with acyclovir. Rev. Neurol. 24, 829–832 (1996).
  • Read SJ, Kurtz JB. Laboratory diagnosis of common viral infections of the central nervous system by using a single multiplex PCR screening assay. J. Clin. Microbiol. 37, 1352–1355 (1999).
  • Casas I, Pozo F, Trallero G et al. Viral diagnosis of neurological infection by RT multiplex PCR: a search for entero- and herpesviruses in a prospective study. J. Med. Virol. 57, 145–151 (1999).
  • Bergstrom T. Polymerase chain reaction for diagnosis of varicella zoster virus central nervous system infections without skin manifestations. Scand. J. Infect. Dis. Suppl. 100, 41–45 (1996).
  • Luppi M, Barozzi P, Maiorana A et al. Human herpesvirus 6 infection in normal human brain tissue. J. Infect. Dis. 169, 943–944 (1994).
  • McCullers JA, Lakeman FD, Whitley RJ. Human herpesvirus 6 is associated with focal encephalitis. Clin. Infect. Dis. 21, 571–576 (1995).
  • Yoshikawa T, Asano Y, Akimoto S et al. Latent infection of human herpesvirus 6 in astrocytoma cell line and alteration of cytokine synthesis. J. Med. Virol. 66, 497–505 (2002).
  • Luppi M, Barozzi P, Morris C et al. Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J. Virol. 73, 754–759 (1999).
  • Kondo K, Kondo T, Okuno T et al. Latent human herpesvirus 6 infection of human monocytes/macrophages. J. Gen. Virol. 72(Pt 6), 1401–1408 (1991).
  • Isaacson E, Glaser CA, Forghani B et al. Evidence of human herpesvirus 6 infection in 4 immunocompetent patients with encephalitis. Clin. Infect. Dis. 40, 890–893 (2005).
  • Birnbaum T, Padovan CS, Sporer B et al. Severe meningoencephalitis caused by human herpesvirus 6 type B in an immunocompetent woman treated with ganciclovir. Clin. Infect. Dis. 40, 887–889 (2005).
  • Portolani M, Pietrosemoli P, Meacci M et al. Detection of Epstein-Barr virus DNA in cerebrospinal fluid from immunocompetent individuals with brain disorders. New Microbiol. 21, 77–79 (1998).
  • Arribas JR, Storch GA, Clifford DB et al. Cytomegalovirus encephalitis. Ann. Intern. Med. 125, 577–587 (1996).
  • Studahl M, Ricksten A, Sandberg T et al. Cytomegalovirus infection of the CNS in non-compromised patients. Acta Neurol. Scand. 89, 451–457 (1994).
  • Gallant JE, Moore RD, Richman DD et al. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J. Infect. Dis. 166, 1223–1227 (1992).
  • Kure K, Llena JF, Lyman WD et al. Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum. Pathol. 22, 700–710 (1991).
  • McCutchan JA. Cytomegalovirus infections of the nervous system in patients with AIDS. Clin. Infect. Dis. 20, 747–754 (1995).
  • Brantsaeter AB, Liestol K, Goplen AK et al. CMV disease in AIDS patients: incidence of CMV disease and relation to survival in a population-based study from Oslo. Scand. J. Infect. Dis. 34, 50–55 (2002).
  • Morgello S, Cho ES, Nielsen S et al. Cytomegalovirus encephalitis in patients with acquired immunodeficiency syndrome: an autopsy study of 30 cases and a review of the literature. Hum. Pathol. 18, 289–297 (1987).
  • Clifford DB, Arribas JR, Storch GA et al. Magnetic resonance brain imaging lacks sensitivity for AIDS associated cytomegalovirus encephalitis. J. Neurovirol. 2, 397–403 (1996).
  • Nagamitsu S, Okabayashi S, Dai S et al. Neuroimaging and neuropathologic findings in AIDS patient with cytomegalovirus infection. Intern. Med. 33, 158–162 (1994).
  • Fillet AM, Raphael M, Visse B et al. Controlled study of human herpes virus 6 detection in acquired immunodeficiency syndrome-associated non-Hodgkin’s lymphoma. The French Study Group for HIV-Associated Tumors. J. Med. Virol. 45, 106–112 (1995).
  • Bossolasco S, Marenzi R, Dahl H et al. Human herpesvirus 6 in cerebrospinal fluid of patients infected with HIV: frequency and clinical significance. J. Neurol. Neurosurg. Psychiatry 67, 789–792 (1999).
  • Wang FZ, Linde A, Hagglund H et al. Human herpesvirus 6 DNA in cerebrospinal fluid specimens from allogeneic bone marrow transplant patients: does it have clinical significance? Clin. Infect. Dis. 28, 562–568 (1999).
  • Bennetto L, Scolding N. Inflammatory/post-infectious encephalomyelitis. J. Neurol. Neurosurg. Psychiatry 75(Suppl. 1), i22–i28 (2004).
  • Garg RK. Acute disseminated encephalomyelitis. Postgrad. Med. J. 79, 11–17 (2003).
  • Gilden DH. Varicella zoster virus vasculopathy and disseminated encephalomyelitis. J. Neurol. Sci. 195, 99–101 (2002).
  • Challoner PB, Smith KT, Parker JD et al. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc. Natl Acad. Sci. USA 92, 7440–7444 (1995).
  • Clark D. Human herpesvirus Type 6 and multiple sclerosis. Herpes 11(Suppl. 2), 112A–119A (2004).
  • Debiasi RL, Tyler KL. Molecular methods for diagnosis of viral encephalitis. Clin. Microbiol. Rev. 17, 903–925 (2004).
  • Lakeman FD, Whitley RJ. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J. Infect. Dis. 171, 857–863 (1995).
  • Weil AA, Glaser CA, Amad Z et al. Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. Clin. Infect. Dis. 34, 1154–1157 (2002).
  • Bouquillon C, Dewilde A, Andreoletti L et al. Simultaneous detection of 6 human herpesviruses in cerebrospinal fluid and aqueous fluid by a single PCR using stair primers. J. Med. Virol. 62, 349–353 (2000).
  • Calvario A, Bozzi A, Scarasciulli M et al. Herpes Consensus PCR test: a useful diagnostic approach to the screening of viral diseases of the central nervous system. J. Clin. Virol. 25(Suppl. 1), S71–78 (2002).
  • Minjolle S, Michelet C, Jusselin I et al. Amplification of the six major human herpesviruses from cerebrospinal fluid by a single PCR. J. Clin. Microbiol. 37, 950–953 (1999).
  • Guffond T, Dewilde A, Lobert PE et al. Significance and clinical relevance of the detection of herpes simplex virus DNA by the polymerase chain reaction in cerebrospinal fluid from patients with presumed encephalitis. Clin. Infect. Dis. 18, 744–749 (1994).
  • Koskiniemi M, Piiparinen H, Rantalaiho T et al. Acute central nervous system complications in varicella zoster virus infections. J. Clin. Virol. 25, 293–301 (2002).
  • Portolani M, Cermelli C, Meacci M et al. Epstein-barr virus DNA in the cerebrospinal fluid of patients with human immunodeficiency virus infection and central nervous system disorders. New Microbiol. 22, 369–374 (1999).
  • Luppi M, Barozzi P, Maiorana A et al. Human herpesvirus-6: a survey of presence and distribution of genomic sequences in normal brain and neuroglial tumors. J. Med. Virol. 47, 105–111 (1995).
  • Tourtellotte WW, Potvin AR, Fleming JO et al. Multiple sclerosis: measurement and validation of central nervous system IgG synthesis rate. Neurology 30, 240–244 (1980).
  • Reiber H. Flow rate of cerebrospinal fluid (CSF) – a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J. Neurol. Sci. 122, 189–203 (1994).
  • Schuller E, Sagar HJ. Central nervous system IgG synthesis in multiple sclerosis. Application of a new formula. Acta Neurol. Scand. 67, 365–371 (1983).
  • Whitley R, Arvin A, Prober C et al. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. Infectious Diseases Collaborative Antiviral Study Group. N. Engl. J. Med. 324, 444–449 (1991).
  • Whitley RJ, Gnann JW Jr. Acyclovir: a decade later. N. Engl. J. Med. 327, 782–789 (1992).
  • Skoldenberg B, Forsgren M, Alestig K et al. Acyclovir versus vidarabine in herpes simplex encephalitis. Randomised multicentre study in consecutive Swedish patients. Lancet 2, 707–711 (1984).
  • Van Landingham KE, Marsteller HB, Ross GW et al. Relapse of herpes simplex encephalitis after conventional acyclovir therapy. J. Am. Med. Assoc. 259, 1051–1053 (1988).
  • Cinque P, Cleator GM, Weber T et al. The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. The EU Concerted Action on Virus Meningitis and Encephalitis. J. Neurol. Neurosurg. Psychiatry 61, 339–345 (1996).
  • Wagstaff AJ, Faulds D, Goa KL. Acyclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 47, 153–205 (1994).
  • Hayden FG. Antiviral drugs (other than antiretrovirals). In: Principles and Practice of Infectious Diseases. Sixth Edition. Mandell GL, Bennett JE, Dolin R (Eds), Elsevier, Amsterdam, The Netherlands, 514–551 (2005).
  • Bean B, Aeppli D. Adverse effects of high-dose intravenous acyclovir in ambulatory patients with acute herpes zoster. J. Infect. Dis. 151, 362–365 (1985).
  • Balfour HH Jr. Antiviral drugs. N. Engl. J. Med. 340, 1255–1268 (1999).
  • Keating MR. Antiviral agents for non-human immunodeficiency virus infections. Mayo Clin. Proc. 74, 1266–1283 (1999).
  • Keller PM, Fyfe JA, Beauchamp L et al. Enzymatic phosphorylation of acyclic nucleoside analogs and correlations with antiherpetic activities. Biochem. Pharmacol. 30, 3071–3077 (1981).
  • Chatis PA, Crumpacker CS. Resistance of herpesviruses to antiviral drugs. Antimicrob. Agents Chemother. 36, 1589–1595 (1992).
  • Bacon TH, Levin MJ, Leary JJ et al. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin. Microbiol. Rev. 16, 114–128 (2003).
  • Shin YK, Weinberg A, Spruance S et al. Susceptibility of herpes simplex virus isolates to nucleoside analogues and the proportion of nucleoside-resistant variants after repeated topical application of penciclovir to recurrent herpes labialis. J. Infect. Dis. 187, 1241–1245 (2003).
  • Chaudhuri A, Kennedy PG. Diagnosis and treatment of viral encephalitis. Postgrad. Med. J. 78, 575–583 (2002).
  • Soul-Lawton J, Seaber E, On N et al. Absolute bioavailability and metabolic disposition of valaciclovir, the l-valyl ester of acyclovir, following oral administration to humans. Antimicrob. Agents Chemother. 39, 2759–2764 (1995).
  • Chan PK, Chow PC, Peiris JS et al. Use of oral valaciclovir in a 12-year-old boy with herpes simplex encephalitis. Hong Kong Med. J. 6, 119–121 (2000).
  • Crumpacker CS. Ganciclovir. N. Engl. J. Med. 335, 721–729 (1996).
  • Agut H, Huraux JM, Collandre H et al. Susceptibility of human herpesvirus 6 to acyclovir and ganciclovir. Lancet 2, 626 (1989).
  • Hamzeh FM, Lietman PS. Intranuclear accumulation of subgenomic noninfectious human cytomegalovirus DNA in infected cells in the presence of ganciclovir. Antimicrob. Agents Chemother. 35, 1818–1823 (1991).
  • Dewhurst S. Human herpesvirus Type 6 and human herpesvirus Type 7 infections of the central nervous system. Herpes 11(Suppl. 2), 105A–111A (2004).
  • Anduze-Faris BM, Fillet AM, Gozlan J et al. Induction and maintenance therapy of cytomegalovirus central nervous system infection in HIV-infected patients. AIDS 14, 517–524 (2000).
  • De Clercq E. Potential of acyclic nucleotide phosphonates in the treatment of DNA virus or retrovirus infections. Exp. Rev. Anti Infect. Ther. 1, 21–43 (2003).
  • Lea AP, Bryson HM. Cidofovir. Drugs 52, 225–230 (1996).
  • Erice A. Resistance of human cytomegalovirus to antiviral drugs. Clin. Microbiol. Rev. 12, 286–297 (1999).
  • De Bolle L, Andrei G, Snoeck R et al. Potent, selective and cell-mediated inhibition of human herpesvirus 6 at an early stage of viral replication by the non-nucleoside compound CMV423. Biochem. Pharmacol. 67, 325–336 (2004).
  • Snoeck R, Andrei G, Bodaghi B et al. 2-chloro-3-pyridin-3-yl-5,6,7,8-tetrahydroindolizine-1-carboxamide (CMV423), a new lead compound for the treatment of human cytomegalovirus infections. Antiviral Res. 55, 413–424 (2002).
  • De Clercq E. New inhibitors of human cytomegalovirus (HCMV) on the horizon. J. Antimicrob. Chemother. 51, 1079–1083 (2003).
  • De Clercq E. Guanosine analogues as antiherpesvirus agents. Nucleosides Nucleotides Nucleic Acids 19, 1531–1541 (2000).
  • Ono N, Iwayama S, Suzuki K et al. Mode of action of (1’S,2’R)-9-[[1’,2’-bis(hydroxymethyl) cycloprop-1’-yl]methyl]guanine (A-5021) against herpes simplex virus Type 1 and Type 2 and varicella-zoster virus. Antimicrob. Agents Chemother. 42, 2095–2102 (1998).
  • Neyts J, Naesens L, Ying C et al. Antiherpesvirus activity of (1’S,2’R)-9-[[1’,2’-bis(hydroxymethyl)-cycloprop-1’-yl]methyl] x guanine (A-5021) in vitro and in vivo. Antiviral Res. 49, 115–120 (2001).
  • Iwayama S, Ohmura Y, Suzuki K et al. Evaluation of antiherpesvirus activity of (1’S,2’R)-9-[[1’,2’-bis(hydroxymethyl)cycloprop-1’-yl]methyl]- guanine (A-5021) in mice. Antiviral Res. 42, 139–148 (1999).
  • De Clercq E. Highly potent and selective inhibition of varicella-zoster virus replication by bicyclic furo[2,3-d]pyrimidine nucleoside analogues. Med. Res. Rev. 23, 253–274 (2003).
  • McGuigan C, Brancale A, Andrei G et al. Novel bicyclic furanopyrimidines with dual antiVZV and -HCMV activity. Bioorg. Med. Chem. Lett. 13, 4511–4513 (2003).
  • Luoni G, McGuigan C, Andrei G et al. Bicyclic nucleoside inhibitors of varicella-zoster virus: 5’-chloro and 3’-chloro derivatives. Nucleosides Nucleotides Nucleic Acids 22, 931–933 (2003).
  • Biron KK, Harvey RJ, Chamberlain SC et al. Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole l-riboside with a unique mode of action. Antimicrob. Agents Chemother. 46, 2365–2372 (2002).
  • Evers DL, Komazin G, Ptak RG et al. Inhibition of human cytomegalovirus replication by benzimidazole nucleosides involves three distinct mechanisms. Antimicrob. Agents Chemother. 48, 3918–3927 (2004).
  • Selleseth DW, Talarico CL, Miller T et al. Interactions of 1263W94 with other antiviral agents in inhibition of human cytomegalovirus replication. Antimicrob. Agents Chemother. 47, 1468–1471 (2003).
  • Lowe DM, Alderton WK, Ellis MR et al. Mode of action of (R)-9-[4-hydroxy-2-(hydroxymethyl)butyl]guanine against herpesviruses. Antimicrob. Agents Chemother. 39, 1802–1808 (1995).
  • Oien NL, Brideau RJ, Hopkins TA et al. Broad spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. Antimicrob. Agents Chemother. 46, 724–730 (2002).
  • Knechtel ML, Huang A, Vaillancourt VA et al. Inhibition of clinical isolates of human cytomegalovirus and varicella zoster virus by PNU-183792, a 4-oxo-dihydroquinoline. J. Med. Virol. 68, 234–236 (2002).
  • Brideau RJ, Knechtel ML, Huang A et al. Broad spectrum antiviral activity of PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses. Antiviral Res. 54, 19–28 (2002).
  • Wan WB, Beadle JR, Hartline C et al. Comparison of the antiviral activities of alkoxyalkyl and alkyl esters of cidofovir against human and murine cytomegalovirus replication in vitro. Antimicrob. Agents Chemother. 49, 656–662 (2005).
  • Kern ER, Collins DJ, Wan WB et al. Oral treatment of murine cytomegalovirus infections with ether lipid esters of cidofovir. Antimicrob. Agents Chemother. 48, 3516–3522 (2004).
  • Bidanset DJ, Beadle JR, Wan WB et al. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection. J. Infect. Dis. 190, 499–503 (2004).
  • Kleymann G, Fischer R, Betz UA et al. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nature Med. 8, 392–398 (2002).
  • Crute JJ, Grygon CA, Hargrave KD et al. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nature Med. 8, 386–391 (2002).
  • Betz UA, Fischer R, Kleymann G et al. Potent in vivo antiviral activity of the herpes simplex virus primase–helicase inhibitor BAY 57–1293. Antimicrob. Agents Chemother. 46, 1766–1772 (2002).
  • Duan J, Liuzzi M, Paris W et al. Oral bioavailability and in vivo efficacy of the helicase–primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus Type 1. Antimicrob. Agents Chemother. 47, 1798–1804 (2003).
  • Kleymann G. New antiviral drugs that target herpesvirus helicase primase enzymes. Herpes 10, 46–52 (2003).
  • Reefschlaeger J, Bender W, Hallenberger S et al. Novel non-nucleoside inhibitors of cytomegaloviruses (BAY 38–4766): in vitro and in vivo antiviral activity and mechanism of action. J. Antimicrob. Chemother. 48, 757–767 (2001).
  • Schleiss MR, Bernstein DI, McVoy MA et al. The non-nucleoside antiviral, BAY 38–4766, protects against cytomegalovirus (CMV) disease and mortality in immunocompromised guinea-pigs. Antiviral Res. 65, 35–43 (2005).
  • Buerger I, Reefschlaeger J, Bender W et al. A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J. Virol. 75, 9077–9086 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.