523
Views
22
CrossRef citations to date
0
Altmetric
Review

Development of human monoclonal antibodies against diseases caused by emerging and biodefense-related viruses

, , , , , & show all
Pages 57-66 | Published online: 10 Jan 2014

References

  • Dimitrov DS. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).
  • Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2, 695–703 (2004).
  • Casadevall A. Passive antibody therapies: progress and continuing challenges. Clin. Immunol. 93, 5–15 (1999).
  • Casadevall A, Scharff MD. Return to the past: the case for antibody-based therapies in infectious diseases. Clin. Infect. Dis. 21, 150–161 (1995).
  • Casadevall A, Scharff MD. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob. Agents Chemother. 38, 1695–1702 (1994).
  • Zeitlin L, Cone RA, Moench TR, Whaley KJ. Preventing infectious disease with passive immunization. Microbes Infect. 2, 701–708 (2000).
  • Sawyer LA. Antibodies for the prevention and treatment of viral diseases. Antiviral Res. 47, 57–77 (2000).
  • Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Intravenous immunoglobulin for infectious diseases: back to the pre-antibiotic and passive prophylaxis era? Trends Pharmacol. Sci. 25, 306–310 (2004).
  • DesJardin JA, Snydman DR. Antiviral immunotherapy – a review of current status. Biodrugs 9, 487–507 (1998).
  • Moudgil A, Shidban H, Nast CC et al. Parvovirus B19 infection-related complications in renal transplant recipients: treatment with intravenous immunoglobulin. Transplantation 64, 1847–1850 (1997).
  • Kurtzman G, Frickhofen N, Kimball J, Jenkins DW, Nienhuis AW, Young NS. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N. Engl. J. Med. 321, 519–523 (1989).
  • Kerr JR, Cunniffe VS, Kelleher P, Bernstein RM, Bruce IN. Successful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndrome. Clin. Infect. Dis. 36, e100–e106 (2003).
  • Koduri PR, Kumapley R, Valladares J, Teter C. Chronic pure red cell aplasia caused by parvovirus B19 in AIDS: use of intravenous immunoglobulin – a report of eight patients. Am. J. Hematol. 61, 16–20 (1999).
  • Clayton AJ. Lassa immune serum. Bull. World Health Organ. 55, 435–439 (1977).
  • Krasnianskii VP, Gradoboev VN, Borisevich IV et al. Development and study of properties of immunoglobulins against Lassa fever. Vopr. Virusol. 42, 168–171 (1997).
  • Shimoni Z, Niven MJ, Pitlick S, Bulvik S. Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg. Infect. Dis. 7, 759 (2001).
  • Hamdan A, Green P, Mendelson E, Kramer MR, Pitlik S, Weinberger M. Possible benefit of intravenous immunoglobulin therapy in a lung transplant recipient with West Nile virus encephalitis. Transpl. Infect. Dis. 4, 160–162 (2002).
  • Pasic S, Jankovic B, Abinun M, Kanjuh B. Intravenous immunoglobulin prophylaxis in an echovirus 6 and echovirus 4 nursery outbreak. Pediatr. Infect. Dis. J. 16, 718–720 (1997).
  • Rotbart HA, O’Connell JF, McKinlay MA. Treatment of human enterovirus infections. Antiviral Res. 38, 1–14 (1998).
  • Masci S, De Simone C, Famularo G et al. Intravenous immunoglobulins suppress the recurrences of genital herpes simplex virus: a clinical and immunological study. Immunopharmacol. Immunotoxicol. 17, 33–47 (1995).
  • Vassilenko SM, Vassilev TL, Bozadjiev LG, Bineva IL, Kazarov GZ. Specific intravenous immunoglobulin for Crimean–Congo haemorrhagic fever. Lancet 335, 791–792 (1990).
  • Enria DA, Briggiler AM, Fernandez NJ, Levis SC, Maiztegui JI. Importance of dose of neutralising antibodies in treatment of Argentine haemorrhagic fever with immune plasma. Lancet 2, 255–256 (1984).
  • Ali MB. Treating severe acute respiratory syndrome with hyperimmune globulins. Hong Kong Med. J. 9, 391–392 (2003).
  • Burnouf T, Radosevich M. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med. J. 9, 309 (2003).
  • Vittecoq D, Chevret S, Morand-Joubert L et al. Passive immunotherapy in AIDS: a double-blind randomized study based on transfusions of plasma rich in antihuman immunodeficiency virus 1 antibodies vs. transfusions of seronegative plasma. Proc. Natl Acad. Sci. USA 92, 1195–1199 (1995).
  • Jablonowski H, Sander O, Willers R, Adams O, Bartmann P, Wahn V. The use of intravenous immunoglobulins in symptomatic HIV infection. Results of a randomized study. Clin. Investig. 72, 220–224 (1994).
  • Olopoenia L, Young M, White D, Barnes S, Rahbar F, Fomufod A. Intravenous immunoglobulin in symptomatic and asymptomatic children with perinatal HIV infection. J. Natl Med. Assoc. 89, 543–547 (1997).
  • Guay LA, Musoke P, Hom DL et al. Phase I/II trial of HIV-1 hyperimmune globulin for the prevention of HIV-1 vertical transmission in Uganda. AIDS 16, 1391–1400 (2002).
  • Dezube BJ, Proper J, Zhang J et al. A passive immunotherapy, (PE)HRG214, in patients infected with human immunodeficiency virus: a Phase I study. J. Infect. Dis. 187, 500–503 (2003).
  • Zolla-Pazner S, Gorny MK. Passive immunization for the prevention and treatment of HIV infection. AIDS 6, 1235–1247 (1992).
  • Wu H, Pfarr DS, Tang Y et al. Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J. Mol. Biol. 350, 126–144 (2005).
  • Saez-Llorens X, Moreno MT, Ramilo O, Sanchez PJ, Top FH Jr, Connor EM. Safety and pharmacokinetics of palivizumab therapy in children hospitalized with respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 23, 707–712 (2004).
  • Zhao X, Sullender WM. In vivo selection of respiratory syncytial viruses resistant to palivizumab. J. Virol. 79, 3962–3968 (2005).
  • Ksiazek TG, Erdman D, Goldsmith CS et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).
  • Peiris JS, Lai ST, Poon LL et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325 (2003).
  • Drosten C, Gunther S, Preiser W et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).
  • Holmes KV. SARS-associated coronavirus. N. Engl. J. Med. 348, 1948–1951 (2003).
  • Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect. 10, 1062–1066 (2004).
  • Nie Y, Wang G, Shi X et al. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J. Infect. Dis. 190, 1119–1126 (2004).
  • Shi Y, Wan Z, Li L et al. Antibody responses against SARS-coronavirus and its nucleocaspid in SARS patients. J. Clin. Virol. 31, 66–68 (2004).
  • Han DP, Kim HG, Kim YB, Poon LL, Cho MW. Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology 326, 140–149 (2004).
  • Guo JP, Petric M, Campbell W, McGeer PL. SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 324, 251–256 (2004).
  • Hofmann H, Hattermann K, Marzi A et al. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J. Virol. 78, 6134–6142 (2004).
  • Subbarao K, McAuliffe J, Vogel L et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).
  • Roberts A, Vogel L, Guarner J et al. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol. 79, 503–511 (2005).
  • McAuliffe J, Vogel L, Roberts A et al. Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330, 8–15 (2004).
  • Wong VW, Dai D, Wu AK, Sung JJ. Treating severe acute respiratory syndrome with hyperimmune globulins. Hong Kong Med. J. 9, 199–210 (2003).
  • Pearson H, Clarke T, Abbott A, Knight J, Cyranoski D. SARS: what have we learned? Nature 424, 121–126 (2003).
  • Ali MB. Treating severe acute respiratory syndrome with hyperimmune globulins. Hong Kong Med. J. 9, 391–392 (2003).
  • Zhang MY, Choudhry V, Xiao X, Dimitrov DS. Human monoclonal antibodies to the S glycoprotein and related proteins as potential therapeutics for SARS. Curr. Opin. Mol. Ther. 7, 151–156 (2005).
  • Traggiai E, Becker S, Subbarao K et al. An efficient method to make human monoclonal antibodies from memory B-cells: potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875 (2004).
  • Yang ZY, Werner HC, Kong WP et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc. Natl Acad. Sci. USA 102, 797–801 (2005).
  • Sui J, Li W, Murakami A et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl Acad. Sci. USA 101, 2536–2541 (2004).
  • Sui J, Li W, Roberts A et al. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J. Virol. 79, 5900–5906 (2005).
  • ter Meulen J, Bakker AB, van den Brink EN et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 363, 2139–2141 (2004).
  • van den Brink EN, ter Meulen J, Cox F et al. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J. Virol. 79, 1635–1644 (2005).
  • Greenough TC, Babcock GJ, Roberts A et al. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis. 191, 507–514 (2005).
  • Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. 312, 1159–1164 (2003).
  • Chakraborti S, Prabakaran P, Xiao X, Dimitrov DS. The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol. J. 2, 73 (2005).
  • Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201 (2004).
  • He Y, Zhou Y, Liu S et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 324, 773–781 (2004).
  • Jiang S, He Y, Liu S. SARS vaccine development. Emerg. Infect. Dis. 11, 1016–1020 (2005).
  • He Y, Lu H, Siddiqui P, Zhou Y, Jiang S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J. Immunol. 174, 4908–4915 (2005).
  • He Y, Zhu Q, Liu S et al. Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology 334, 74–82 (2005).
  • Chen Z, Zhang L, Qin C et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 79, 2678–2688 (2005).
  • Yi CE, Ba L, Zhang L, Ho DD, Chen Z. Single amino acid substitutions in the severe acute respiratory syndrome coronavirus spike glycoprotein determine viral entry and immunogenicity of a major neutralizing domain. J. Virol. 79, 11638–11646 (2005).
  • Burton DR. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).
  • Duan J, Yan X, Guo X et al. A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem. Biophys. Res. Commun. 333, 186–193 (2005).
  • Li W, Moore MJ, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
  • Li W, Shi Z, Yu M et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
  • Lau SK, Woo PC, Li KS et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005).
  • Murray K, Selleck P, Hooper P et al. A morbillivirus that caused fatal disease in horses and humans. Science 268, 94–97 (1995).
  • Lee KE, Umapathi T, Tan CB et al. The neurological manifestations of Nipah virus encephalitis, a novel paramyxovirus. Ann. Neurol. 46, 428–432 (1999).
  • Lim CC, Sitoh YY, Hui F et al. Nipah viral encephalitis or Japanese encephalitis? MR findings in a new zoonotic disease. Am. J. Neuroradiol. 21, 455–461 (2000).
  • Chua KB, Goh KJ, Wong KT et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354, 1257–1259 (1999).
  • Chew MH, Arguin PM, Shay DK et al. Risk factors for Nipah virus infection among abattoir workers in Singapore. J. Infect. Dis. 181, 1760–1763 (2000).
  • Chua KB, Lam SK, Tan CT et al. High mortality in Nipah encephalitis is associated with presence of virus in cerebrospinal fluid. Ann. Neurol. 48, 802–805 (2000).
  • Goh KJ, Tan CT, Chew NK et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N. Engl. J. Med. 342, 1229–1235 (2000).
  • Update: outbreak of Nipah virus – Malaysia and Singapore, 1999. MMWR Morb. Mortal. Wkly Rep. 48, 335–337 (1999).
  • Chua KB, Bellini WJ, Rota PA et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432–1435 (2000).
  • Eaton BT. Introduction to current focus on Hendra and Nipah viruses. Microbes Infect. 3, 277–278 (2001).
  • Zhu Z, Dimitrov AS, Bossart KN et al. Potent neutralization of Hendra and Nipha viruses by human monoclonal antibodies. J. Virol. 80, 891–899 (2006).
  • Bonaparte MI, Dimitrov AS, Bossart KN et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl Acad. Sci. USA 102(30), 10652–10657 (2005).
  • Negrete OA, Levroney EL, Aguilar HC et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436, 401–405 (2005).
  • Takada A, Feldmann H, Ksiazek TG, Kawaoka Y. Antibody-dependent enhancement of Ebola virus infection. J. Virol. 77, 7539–7544 (2003).
  • Jahrling PB, Geisbert TW, Geisbert JB et al. Evaluation of immune globulin and recombinant interferon-alpha2b for treatment of experimental Ebola virus infections. J. Infect. Dis. 179(Suppl. 1), S224–S234 (1999).
  • Kudoyarova-Zubavichene NM, Sergeyev NN, Chepurnov AA, Netesov SV. Preparation and use of hyperimmune serum for prophylaxis and therapy of Ebola virus infections. J. Infect. Dis. 179(Suppl. 1), S218–S223 (1999).
  • Mupapa K, Massamba M, Kibadi K et al. Treatment of Ebola hemorrhagic fever with blood transfusions from convalescent patients. International Scientific and Technical Committee. J. Infect. Dis. 179(Suppl. 1), S18–S23 (1999).
  • Gupta M, Mahanty S, Bray M, Ahmed R, Rollin PE. Passive transfer of antibodies protects immunocompetent and imunodeficient mice against lethal Ebola virus infection without complete inhibition of viral replication. J. Virol. 75, 4649–4654 (2001).
  • Wilson JA, Hevey M, Bakken R et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287, 1664–1666 (2000).
  • Maruyama T, Rodriguez LL, Jahrling PB et al. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol. 73, 6024–6030 (1999).
  • Maruyama T, Parren PW, Sanchez A et al. Recombinant human monoclonal antibodies to Ebola virus. J. Infect. Dis. 179(Suppl. 1), S235–S239 (1999).
  • Takada A, Kawaoka Y. The pathogenesis of Ebola hemorrhagic fever. Trends Microbiol. 9, 506–511 (2001).
  • Takada A, Feldmann H, Stroeher U et al. Identification of protective epitopes on ebola virus glycoprotein at the single amino acid level by using recombinant vesicular stomatitis viruses. J. Virol. 77, 1069–1074 (2003).
  • Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J. Virol. 79, 7466–7477 (2005).
  • Oliphant T, Engle M, Nybakken GE et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 11, 522–530 (2005).
  • Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437, 764–769 (2005).
  • Sanchez MD, Pierson TC, McAllister D et al. Characterization of neutralizing antibodies to West Nile virus. Virology 336, 70–82 (2005).
  • Chumakov MP. Studies of virus haemorrhagic fevers. J. Hyg. Epidemiol. Microbiol. Immunol. 7, 125–135 (1963).
  • Donchev D, Kebedzhiev G, Rusakiev M. Hemorrhagic fever in Bulgaria. In: Crimean hemorrhagic fever. Chumakov MP (Ed.) Translation 650, Medical zoology department, United States naval medical research unit number three, Cairo, Arab Republic of Egypt (from 1st Congress of Microbiology, 774–784 (1955) Institute of Microbiology, Bulgarian Academy of Sciences), Rostov-on-Don, 194–200 (1970).
  • Hoogstraal H. The epidemiology of tick-borne Crimean–Congo hemorrhagic fever in Asia, Europe, and Africa. J. Med. Entomol. 15, 307–417 (1979).
  • Shepherd AJ, Swanepoel R, Leman PA. Antibody response in Crimean–Congo hemorrhagic fever. Rev. Infect. Dis. 11(Suppl. 4), S801–S806 (1989).
  • Papa A, Bozovi B, Pavlidou V, Papadimitriou E, Pelemis M, Antoniadis A. Genetic detection and isolation of crimean-congo hemorrhagic fever virus, Kosovo, Yugoslavia. Emerg. Infect. Dis. 8, 852–854 (2002).
  • Vincent MJ, Sanchez AJ, Erickson BR et al. Crimean–Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J. Virol. 77, 8640–8649 (2003).
  • Sanchez AJ, Vincent MJ, Nichol ST. Characterization of the glycoproteins of Crimean–Congo hemorrhagic fever virus. J. Virol. 76, 7263–7275 (2002).
  • Bertolotti-Ciarlet A, Smith J, Strecker K et al. Cellular localization and antigenic characterization of Crimean–Congo hemorrhagic fever virus glycoproteins. J. Virol. 79, 6152–6161 (2005).
  • de Carvalho NC, Lundkvist A, Sjolander KB, Plyusnin A, Salonen EM, Bjorling E. A neutralizing recombinant human antibody Fab fragment against Puumala hantavirus. J. Med. Virol. 60, 446–454 (2000).
  • Liang M, Mahler M, Koch J et al. Generation of an HFRS patient-derived neutralizing recombinant antibody to Hantaan virus G1 protein and definition of the neutralizing domain. J. Med. Virol. 69, 99–107 (2003).
  • Leparc-Goffart I, Poirier B, Garin D, Tissier MH, Fuchs F, Crance JM. Standardization of a neutralizing antivaccinia antibodies titration method: an essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation. J. Clin. Virol. 32, 47–52 (2005).
  • Schmaljohn C, Cui Y, Kerby S, Pennock D, Spik K. Production and characterization of human monoclonal antibody Fab fragments to vaccinia virus from a phage-display combinatorial library. Virology 258, 189–200 (1999).
  • Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J. Virol. 79, 13454–13462 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.