228
Views
28
CrossRef citations to date
0
Altmetric
Review

Epstein–Barr virus-associated lymphomas

Pages 77-89 | Published online: 10 Jan 2014

References

  • Hennessy K, Kieff E. One of two Epstein-Barr virus nuclear antigens contains a glycine-alanine copolymer domain. Proc. Natl Acad. Sci. USA 80, 5665–5669 (1983).
  • Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248, 1230–1234 (1990).
  • Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nature Rev. Cancer 4, 757–768 (2004).
  • Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350, 1328–1337 (2004).
  • Young LS, Dawson CW, Eliopoulos AG. The expression and function of Epstein-Barr virus encoded latent genes. Mol. Pathol. 53, 238–247 (2000).
  • Khanna R, Moss D, Gandhi MK. Applications of emerging immunotherapeutic strategies for Epstein-Barr virus-associated malignancies. Nature Clin. Pract. Oncol. 2, 138–149 (2005).
  • Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J. Virol. 71, 4882–4891 (1997).
  • Okano M. Haematological associations of Epstein-Barr virus infection. Baillieres Best Pract. Res. Clin. Haematol. 13, 199–214 (2000).
  • Hengge UR, Ruzicka T, Tyring SK et al. Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 2: pathogenesis, Castleman’s disease, and pleural effusion lymphoma. Lancet Infect. Dis. 2, 344–352 (2002).
  • Li YX, Coucke PA, Li JY et al. Primary non-Hodgkin’s lymphoma of the nasal cavity: prognostic significance of paranasal extension and the role of radiotherapy and chemotherapy. Cancer 83, 449–456 (1998).
  • Chan AT, Tao Q, Robertson KD et al. Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J. Clin. Oncol. 22, 1373–1381 (2004).
  • Jaffe ES, Chan JK, Su IJ et al. Report of the workshop on nasal and related extranodal angiocentric T/natural killer cell lymphomas. definitions, differential diagnosis, and epidemiology. Am. J. Surg. Pathol. 20, 103–111 (1996).
  • Arber DA, Weiss LM, Albujar PF, Chen YY, Jaffe ES. Nasal lymphomas in Peru. High incidence of T-cell immunophenotype and Epstein-Barr virus infection. Am. J. Surg. Pathol. 17, 392–399 (1993).
  • Elenitoba-Johnson KS, Zarate-Osorno A, Meneses A et al. Cytotoxic granular protein expression, Epstein-Barr virus strain type, and latent membrane protein-1 oncogene deletions in nasal T-lymphocyte/natural killer cell lymphomas from Mexico. Mod. Pathol. 11, 754–761 (1998).
  • Nava VE, Jaffe ES. The pathology of NK-cell lymphomas and leukemias. Adv. Anat. Pathol. 12, 27–34 (2005).
  • Cheung MM, Chan JK, Lau WH, Ngan RK, Foo WW. Early stage nasal NK/T-cell lymphoma: clinical outcome, prognostic factors, and the effect of treatment modality. Int. J. Radiat. Oncol. Biol. Phys. 54, 182–190 (2002).
  • Cheung MM, Chan JK, Lau WH et al. Primary non-Hodgkin’s lymphoma of the nose and nasopharynx: clinical features, tumor immunophenotype, and treatment outcome in 113 patients. J. Clin. Oncol. 16, 70–77 (1998).
  • Harabuchi Y, Yamanaka N, Kataura A et al. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 335, 128–130 (1990).
  • Chan JK, Sin VC, Wong KF et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood 89, 4501–4513 (1997).
  • van Gorp J, Weiping L, Jacobse K et al. Epstein-Barr virus in nasal T-cell lymphomas (polymorphic reticulosis/midline malignant reticulosis) in western China. J. Pathol. 173, 81–87 (1994).
  • Kanavaros P, Lescs MC, Briere J et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus. Blood 81, 2688–2695 (1993).
  • Li Q, Spriggs MK, Kovats S et al. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 71, 4657–4662 (1997).
  • Haan KM, Kwok WW, Longnecker R, Speck P. Epstein-Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J. Virol. 74, 2451–2454 (2000).
  • Burkitt D. Determining the climatic limitations of a children’s cancer common in Africa. Br. Med. J. 5311, 1019–1023 (1962).
  • de-The G, Geser A, Day NE et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274, 756–761 (1978).
  • Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 15, 702–703 (1964).
  • Hamilton-Dutoit SJ, Raphael M, Audouin J et al. In situ demonstration of Epstein-Barr virus small RNAs (EBER 1) in acquired immunodeficiency syndrome-related lymphomas: correlation with tumor morphology and primary site. Blood 82, 619–624 (1993).
  • Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47, 883–889 (1986).
  • Anwar N, Kingma DW, Bloch AR et al. The investigation of Epstein-Barr viral sequences in 41 cases of Burkitt’s lymphoma from Egypt: epidemiologic correlations. Cancer 76, 1245–1252 (1995).
  • Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood 104, 3009–3020 (2004).
  • Khanna R, Moss D, Gandhi MK. Applications of emerging immunotherapeutic strategies for Epstein-Barr virus-associated malignancies. Nature Clin. Pract. Oncol. 2, 138–149 (2005).
  • Sample J, Brooks L, Sample C et al. Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen 1 transcriptional initiation site. Proc. Natl Acad. Sci. USA 88, 6343–6347 (1991).
  • Niedobitek G, Agathanggelou A, Rowe M et al. Heterogeneous expression of Epstein-Barr virus latent proteins in endemic Burkitt’s lymphoma. Blood 86, 659–665 (1995).
  • Yoshioka M, Kikuta H, Ishiguro N, Ma X, Kobayashi K. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection. J. Gen. Virol. 84, 1133–1140 (2003).
  • Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812–815 (1985).
  • Wilson JB, Bell JL, Levine AJ. Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 15, 3117–3126 (1996).
  • Kang MS, Lu H, Yasui T et al. Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc. Natl Acad. Sci. USA 102, 820–825 (2005).
  • Komano J, Maruo S, Kurozumi K, Oda T, Takada K. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J. Virol. 73, 9827–9831 (1999).
  • Cohen JI, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl Acad. Sci. USA 86, 9558–9562 (1989).
  • Kelly G, Bell A, Rickinson A. Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nature Med. 8, 1098–1104 (2002).
  • Yin Y, Manoury B, Fahraeus R. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301, 1371–1374 (2003).
  • Duraiswamy J, Bharadwaj M, Tellam J et al. Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res. 64, 1483–1489 (2004).
  • Lee SP, Brooks JM, Al-Jarrah H et al. CD8 T cell recognition of endogenously expressed epstein-barr virus nuclear antigen 1. J. Exp. Med. 199, 1409–1420 (2004).
  • Tellam J, Sherritt M, Thomson S et al. Targeting of EBNA1 for rapid intracellular degradation overrides the inhibitory effects of the Gly-Ala repeat domain and restores CD8+ T cell recognition. J. Biol. Chem. 276, 33353–33360 (2001).
  • Khanna R, Burrows SR, Thomson SA et al. Class I processing-defective Burkitt’s lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J. Immunol. 158, 3619–3625 (1997).
  • Fu T, Voo KS, Wang RF. Critical role of EBNA1-specific CD4+ T cells in the control of mouse Burkitt lymphoma in vivo. J. Clin. Invest. 114, 542–550 (2004).
  • Paludan C, Schmid D, Landthaler M et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).
  • Rea D, Delecluse HJ, Hamilton-Dutoit SJ et al. Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin’s lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann. Oncol. 5(Suppl. 1), 113–116 (1994).
  • Meijer E, Dekker AW, Weersink AJ, Rozenberg-Arska M, Verdonck LF. Prevention and treatment of Epstein-Barr virus-associated lymphoproliferative disorders in recipients of bone marrow and solid organ transplants. Br. J. Haematol. 119, 596–607 (2002).
  • Paya CV, Fung JJ, Nalesnik MA et al. Epstein-Barr virus-induced post-transplant lymphoproliferative disorders. ASTS/ASTP EBV-PTLD Task Force and The Mayo Clinic Organized International Consensus Development Meeting. Transplantation 68, 1517–1525 (1999).
  • Cesarman E, Chadburn A, Liu YF, Migliazza A, Dalla-Favera R, Knowles DM. BCL-6 gene mutations in post-transplantation lymphoproliferative disorders predict response to therapy and clinical outcome. Blood 92, 2294–2302 (1998).
  • Finn L, Reyes J, Bueno J, Yunis E. Epstein-Barr virus infections in children after transplantation of the small intestine. Am. J. Surg. Pathol. 22, 299–309 (1998).
  • Curtis RE, Travis LB, Rowlings PA et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94, 2208–2216 (1999).
  • Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect. Dis. 4, 725–738 (2004).
  • Hale G, Waldmann H. Risks of developing Epstein-Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. CAMPATH Users. Blood 91, 3079–3083 (1998).
  • Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet 342, 1514–1516 (1993).
  • Wagner HJ, Wessel M, Jabs W et al. Patients at risk for development of post-transplant lymphoproliferative disorder: plasma versus peripheral blood mononuclear cells as material for quantification of Epstein-Barr viral load by using real-time quantitative polymerase chain reaction. Transplantation 72, 1012–1019 (2001).
  • Tsai DE, Hardy CL, Tomaszewski JE. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation 71, 1076–1088 (2001).
  • Herzig KA, Juffs HG, Norris D et al. A single-centre experience of post-renal transplant lymphoproliferative disorder. Transpl. Int. 16, 529–536 (2003).
  • Milpied N, Vasseur B, Parquet N et al. Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Ann. Oncol. 11(Suppl. 1), 113–116 (2000).
  • Savoldo B, Rooney CM, Quiros-Tejeira RE et al. Cellular immunity to epstein-barr virus in liver transplant recipients treated with rituximab for post-transplant lymphoproliferative disease. Am. J. Transplant. 5, 566–572 (2005).
  • Starzl TE, Nalesnik MA, Porter KA et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1, 583–587 (1984).
  • Hanto DW, Frizzera G, Gajl-Peczalska KJ, Simmons RL. Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation 39, 461–472 (1985).
  • Mentzer SJ, Fingeroth J, Reilly JJ, Perrine SP, Faller DV. Arginine butyrate-induced susceptibility to ganciclovir in an Epstein-Barr-virus-associated lymphoma. Blood Cells Mol. Dis. 24, 114–123 (1998).
  • Feng WH, Hong G, Delecluse HJ, Kenney SC. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J. Virol. 78, 1893–1902 (2004).
  • Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92, 1549–1555 (1998).
  • Khanna R, Bell S, Sherritt M et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl Acad. Sci. USA 96, 10391–10396 (1999).
  • Comoli P, Labirio M, Basso S et al. Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood 99, 2592–2598 (2002).
  • Comoli P, Maccario R, Locatelli F et al. Treatment of EBV-related post-renal transplant lymphoproliferative disease with a tailored regimen including EBV-specific T cells. Am. J. Transplant. 5, 1415–1422 (2005).
  • Wilkie GM, Taylor C, Jones MM et al. Establishment and characterization of a bank of cytotoxic T lymphocytes for immunotherapy of Epstein-Barr virus-associated diseases. J. Immunother. 27, 309–316 (2004).
  • Wynn RF, Arkwright PD, Haque T et al. Treatment of Epstein-Barr-virus-associated primary CNS B cell lymphoma with allogeneic T-cell immunotherapy and stem-cell transplantation. Lancet Oncol. 6, 344–346 (2005).
  • Haque T, Wilkie GM, Taylor C et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360, 436–442 (2002).
  • Hakulinen T, Isomaki H, Knekt P. Rheumatoid arthritis and cancer studies based on linking nationwide registries in Finland. Am. J. Med. 78, 29–32 (1985).
  • Symmons DP. Neoplasms of the immune system in rheumatoid arthritis. Am. J. Med. 78, 22–28 (1985).
  • Georgescu L, Paget SA. Lymphoma in patients with rheumatoid arthritis: what is the evidence of a link with methotrexate? Drug Saf. 20, 475–487 (1999).
  • Moder KG, Tefferi A, Cohen MD, Menke DM, Luthra HS. Hematologic malignancies and the use of methotrexate in rheumatoid arthritis: a retrospective study. Am. J. Med. 99, 276–281 (1995).
  • Kremer JM. Safety, efficacy, and mortality in a long-term cohort of patients with rheumatoid arthritis taking methotrexate: follow-up after a mean of 13.3 years. Arthritis Rheum. 40, 984–985 (1997).
  • Weinblatt ME, Maier AL, Fraser PA, Coblyn JS. Longterm prospective study of methotrexate in rheumatoid arthritis: conclusion after 132 months of therapy. J. Rheumatol. 25, 238–242 (1998).
  • Cockburn IT, Krupp P. The risk of neoplasms in patients treated with cyclosporine A. J. Autoimmun. 2, 723–731 (1989).
  • Mariette X, Cazals-Hatem D, Warszawki J, Liote F, Balandraud N, Sibilia J. Lymphomas in rheumatoid arthritis patients treated with methotrexate: a 3-year prospective study in France. Blood 99, 3909–3915 (2002).
  • Salloum E, Cooper DL, Howe G et al. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J. Clin. Oncol. 14, 1943–1949 (1996).
  • Kamel OW, van de Rijn M, Weiss LM et al. Brief report: reversible lymphomas associated with Epstein-Barr virus occurring during methotrexate therapy for rheumatoid arthritis and dermatomyositis. N. Engl. J. Med. 328, 1317–1321 (1993).
  • Kamel OW, Weiss LM, van de Rijn M, Colby TV, Kingma DW, Jaffe ES. Hodgkin’s disease and lymphoproliferations resembling Hodgkin’s disease in patients receiving long-term low-dose methotrexate therapy. Am. J. Surg. Pathol. 20, 1279–1287 (1996).
  • Feng WH, Cohen JI, Fischer S et al. Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J. Natl Cancer Inst. 96, 1691–1702 (2004).
  • Tosato G, Steinberg AD, Yarchoan R et al. Abnormally elevated frequency of Epstein-Barr virus-infected B cells in the blood of patients with rheumatoid arthritis. J. Clin. Invest. 73, 1789–1795 (1984).
  • Tosato G, Steinberg AD, Blaese RM. Defective EBV-specific suppressor T-cell function in rheumatoid arthritis. N. Engl. J. Med. 305, 1238–1243 (1981).
  • Wilson WH, Kingma DW, Raffeld M, Wittes RE, Jaffe ES. Association of lymphomatoid granulomatosis with Epstein-Barr viral infection of B lymphocytes and response to interferon-a 2b. Blood 87, 4531–4537 (1996).
  • Koss MN, Hochholzer L, Langloss JM, Wehunt WD, Lazarus AA, Nichols PW. Lymphomatoid granulomatosis: a clinicopathologic study of 42 patients. Pathology 18, 283–288 (1986).
  • Beaty MW, Toro J, Sorbara L et al. Cutaneous lymphomatoid granulomatosis: correlation of clinical and biologic features. Am. J. Surg. Pathol. 25, 1111–1120 (2001).
  • Katzenstein AL, Carrington CB, Liebow AA. Lymphomatoid granulomatosis: a clinicopathologic study of 152 cases. Cancer 43, 360–373 (1979).
  • McNiff JM, Cooper D, Howe G et al. Lymphomatoid granulomatosis of the skin and lung. An angiocentric T-cell-rich B-cell lymphoproliferative disorder. Arch. Dermatol. 132, 1464–1470 (1996).
  • Medeiros LJ, Peiper SC, Elwood L, Yano T, Raffeld M, Jaffe ES. Angiocentric immunoproliferative lesions: a molecular analysis of eight cases. Hum. Pathol. 22, 1150–1157 (1991).
  • Stein H, Delsol G, Pileri S et al. Hodgkin’s lymphoma. In: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Jaffe ES, Harris NL, Stein H, Vardiman JW (Eds). International Agency for Research on Cancer Press, Lyon, France, 238–253 (2001).
  • Pileri SA, Ascani S, Leoncini L et al. Hodgkin’s lymphoma: the pathologist’s viewpoint. J. Clin. Pathol. 55, 162–176 (2002).
  • Timms JM, Bell A, Flavell JR et al. Target cells of Epstein-Barr-virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin’s lymphoma. Lancet 361, 217–223 (2003).
  • Kuppers R, Klein U, Schwering I et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J. Clin. Invest. 111, 529–537 (2003).
  • Gandhi MK, Tellam JT, Khanna R. Epstein-Barr virus-associated Hodgkin’s lymphoma. Br. J. Haematol. 125, 267–281 (2004).
  • Herbst H, Dallenbach F, Hummel M et al. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc. Natl Acad. Sci. USA 88, 4766–4770 (1991).
  • Jarrett RF, Gallagher A, Jones DB et al. Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J. Clin. Pathol. 44, 844–848 (1991).
  • Ambinder RF, Browning PJ, Lorenzana I et al. Epstein-Barr virus and childhood Hodgkin’s disease in Honduras and the United States. Blood 81, 462–467 (1993).
  • Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet 337, 320–322 (1991).
  • Jarrett AF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann. Oncol. 7(Suppl. 4), 5–10 (1996).
  • Jarrett RF, Stark GL, White J et al. Impact of tumour Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classical Hodgkin lymphoma: a population-based study. Blood 106(7), 2444–2451 (2005).
  • Hjalgrim H, Askling J, Rostgaard K et al Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N. Engl. J. Med. 349, 1324–1332 (2003).
  • Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nature Rev. Immunol. 3, 801–812 (2003).
  • Huen DS, Henderson SA, Croom-Carter D, Rowe M. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549–560 (1995).
  • Bargou RC, Emmerich F, Krappmann D et al. Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Invest. 100, 2961–2969 (1997).
  • Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C. Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 18, 943–953 (1999).
  • Devergne O, Hatzivassiliou E, Izumi KM et al. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-κB activation. Mol. Cell. Biol. 16, 7098–7108 (1996).
  • Asso-Bonnet M, Feuillard J, Ferreira V et al. Relationship between IκBα constitutive expression, TNFα synthesis, and apoptosis in EBV-infected lymphoblastoid cells. Oncogene 17, 1607–1615 (1998).
  • Portis T, Dyck P, Longnecker R. Epstein-Barr virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin’s lymphoma. Blood 102(12), 4166–4178 (2003).
  • Portis T, Longnecker R. Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J. Virol. 77, 105–114 (2003).
  • Diepstra A, Niens M, Vellenga E et al. Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365, 2216–2224 (2005).
  • Maggio E, van den Berg A, Diepstra A, Kluiver J, Visser L, Poppema S. Chemokines, cytokines and their receptors in Hodgkin’s lymphoma cell lines and tissues. Ann. Oncol. 13(Suppl. 1), 52–56 (2002).
  • Bollard CM, Aguilar L, Straathof KC et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin’s disease. J. Exp. Med. 200, 1623–1633 (2004).
  • Duraiswamy J, Sherritt M, Thomson S et al. Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma. Blood 101, 3150–3156 (2003).
  • Gallagher A, Armstrong AA, MacKenzie J et al. Detection of Epstein-Barr virus (EBV) genomes in the serum of patients with EBV-associated Hodgkin’s disease. Int. J. Cancer 84, 442–448 (1999).
  • Kornacker M, Jox A, Vockerodt M et al. Detection of a Hodgkin/Reed-Sternberg cell specific immunoglobulin gene rearrangement in the serum DNA of a patient with Hodgkin’s disease. Br. J. Haematol. 106, 528–531 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.