77
Views
21
CrossRef citations to date
0
Altmetric
Review

Potential biological targets of Bacillus anthracis in anti-infective approaches against the threat of bioterrorism

Pages 665-684 | Published online: 10 Jan 2014

References

  • Riedel S. Anthrax: a continuing concern in the era of bioterrorism. BUMC Proceedings18, 234–243 (2005).
  • Inglesby TV, O’Toole T, Henderson DA et al, for the Working Group on Civilian Biodefense. Anthrax as a biological weapon – updated recommendations for management. JAMA287(17), 2236–2252 (2002).
  • Riedel S. Biological warfare and bioterrorism: a historical review. BUMC Proceedings17, 400–406 (2004).
  • Webb GF. Being prepared: modeling the response to an anthrax attack. Ann. Inter. Med.142(8), 667–668 (2005).
  • Wang JY, Roehler MH. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin. Med. Immunol.4(1), 4 (2005).
  • WHO. Health Aspects of Chemical and Biological Weapons. WHO, Geneva, Switzerland (1970).
  • Lew D, Garbino J. Bacillus anthracis (anthrax). Curr. Treat. Options Infect. Dis.5, 409–418 (2003).
  • Spencer RC. Bacillus anthracis.J. Clin. Pathol.56, 182–187 (2003).
  • Soviet Biological Warfare Threat. Publication DST-161OF-057–86. Defense Intelligence Agency, US Deptartment of Defense,Washington, DC, USA (1986).
  • Peters CJ, Hartley DM. Anthrax inhalation and lethal human infection. Lancet359, 710–711 (2002).
  • Brey RN. Molecular basis for improved anthrax vaccines. Adv. Drug Deliv. Rev.57(9), 1266–1292 (2005).
  • Read TD, Peterson SN, Tourasse N et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423(6935), 81–86 (2003).
  • Coker PR, Smith KL, Fellows PF, Rybachuck G, Kousoulas KG, Hugh-Jones ME. Bacillus anthracis virulence in guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality. J. Clin. Microbiol.41(3), 1212–1218 (2003).
  • Pannucci J, Okinaka RT, Williams E, Sabin R, Ticknor LO, Kuske CR. DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics3(1), 34 (2002).
  • Pannucci J, Okinaka RT, Sabin R, Kuske CR. Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J. Bacteriol.184(1), 134–141 (2002).
  • Candela T, Mock M, Fouet A. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J. Bacteriol.187(22), 7765–7772 (2005).
  • Makino S, Watarai M, Cheun HI, Shirahata T, Uchida I. Effect of the lower molecular capsule released from the cell surface of Bacillus anthracis on the pathogenesis of anthrax. J. Infect. Dis.186(2), 227–233 (2002).
  • Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol.181(20), 6509–6515 (1999).
  • Fouet A, Mock M. Regulatory networks for virulence and persistence of Bacillus anthracis.Curr. Opin. Microbiol.9(2), 160–166 (2006).
  • Bourgogne A, Drysdale M, Hilsenbeck SG, Peterson SN, Koehler TM. Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect. Immun.71(5), 2736–2743 (2003).
  • Prince AS. The host response to anthrax lethal toxin: unexpected observations. J. Clin. Invest.112(5), 656–658 (2003).
  • Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev.68(3), 373–402 (2004).
  • Mogridge J, Cunningham K, Lacy DB, Mourez M, Collier RJ. The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen. Proc. Natl Acad. Sci. USA99(10), 7045–7048 (2002).
  • Santelli E, Bankston LA, Leppla SH, Liddington RC. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature430(7002) 905–908 (2004).
  • Keim P, Mock M, Young J, Koehler TM. The International Bacillus anthracis, B. cereus, and B. thuringiensis Conference, “Bacillus-ACT05”. J. Bacteriol.188(10), 3433–3441 (2006).
  • Friedlander AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem.261(16), 7123–7126 (1986).
  • Flick-Smith HC, Walker NJ, Gibson P et al. A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect. Immun.70(3), 1653–1656 (2002).
  • Cote CK, Van Rooijen N, Velkos SL. Roles of macrophages and neutrophils in the early host response to Bacillus anthracis spores in a mouse model of infection. Infect. Immun.74(1), 469–480 (2006).
  • Fukao T. Immune system paralysis by anthrax lethal toxin: the roles of innate and adaptive immunity. Lancet Infect. Dis.4(3), 166–170 (2004).
  • Guidi-Rontani C. The alveolar macrophage: the Trojan horse of Bacillus anthracis.Trends Microbiol.10(9), 405–409 (2002).
  • Culley NC, Pinson DM, Chakrabarty A, Mayo MS, Levine SM. Pathophysiological manifestations in mice exposed to anthrax lethal toxin. Infect. Immun.73(10), 7006–7010 (2005).
  • Raines KW, Kang TJ, Hibbs S et al. Importance of nitric oxide synthase in the control of infection by Bacillus anthracis.Infect. Immun.74, 2268–2267 (2006).
  • Sherer K, Li Y, Cui X, Eichacker PQ. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Am. J. Respir. Crit. Care Med.175(3), 211–221 (2007).
  • Warfel JM, Steele AD, D’Agnillo F. Anthrax lethal toxin induces endothelial barrier dysfunction. Am. J. Pathol.166, 1871–1881 (2005).
  • Cui X, Li Y, Li X et al. Bacillus anthracis edema and lethal toxin have different hemodynamic effects but function together to worsen shock and outcome in a rat model. J. Infect. Dis.195(4), 572–580 (2007).
  • Firoved AM, Moayeri M, Wiggins JF, Shen Y, Tang WJ, Leppla SH. Anthrax edema toxin sensitizes DBA/2J mice to lethal toxin. Infect. Immun.75(5), 2120–2125 (2007).
  • Baillie LW. Past, imminent and future human medical countermeasures for anthrax. J. Appl. Microbiol.101(3), 594–606 (2006).
  • Subramanian GM, Cronin PW, Poley G et al. A Phase-1 study of PamAb, a fully human monoclonal antibody against Bacillus anthracis protective antigen, in healthy volunteers. Clin. Infect. Dis.41, 12–20 (2005).
  • Webb GF. A silent bomb: the risk of anthrax as a weapon of mass destruction. Proc. Natl Acad. Sci. USA15(100), 4355–4356 (2003).
  • Forino M, Johnson S, Wong TY et al. Efficient synthetic inhibitors of anthrax lethal factor. Proc. Natl Acad. Sci. USA102(27), 9499–9504 (2005).
  • Phipps AJ, Premanandan C, Barnewall RE, Lairmore MD. Rabbit and nonhuman primate models of toxin-targeting human anthrax vaccines. Microbiol. Mol. Biol. Rev.68(4), 617–629 (2004).
  • Lyons CR, Lovchik J, Hutt J et al. Murine model of pulmonary anthrax: kinetics of dissemination, histopathology, and mouse strain susceptibility. Infect. Immun.72(8), 4801–4809 (2004).
  • Stearns-Kurosawa DJ, Lupu F, Taylor FB Jr, Kinasewitz G, Kurosawa S. Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am. J. Pathol.169(2), 433–444 (2006).
  • Duong S, Chiaraviglio L, Kirby JE. Histopathology in a murine model of anthrax. Int. J. Exp. Pathol.87(2), 131–137 (2006).
  • Kubler-Kielb J, Liu TY, Mocca C, Majadly F, Robbins JB, Schneerson R. Additional conjugation methods and immunogenicity of Bacillus anthracis poly-γ-D-glutamic acid-protein conjugates. Infect. Immun.74(8), 4744–4749 (2006).
  • Candela T, Fouet A. Poly-γ-glutamate in bacteria. Mol. Microbiol.60(5), 1091–1098 (2006).
  • Joyce J, Cook J, Chabot D et al. Immunogenicity and protective efficacy of Bacillus anthracis poly-γ-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J. Biol. Chem.281(8), 4831–4843 (2006).
  • Schneerson R, Kubler-Kielb J, Liu T-Y et al. Poly (γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc. Natl Acad. Sci. USA100(15), 8945–8950 (2003).
  • Wang TT, Lucas AH. The capsule of Bacillus anthracis behaves as a thymus-independent type 2 antigen. Infect. Immun.72(9), 5460–5463 (2004).
  • Kozel TR, Murphy WJ, Brandt S et al. mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc. Natl Acad. Sci. USA101, 5042–5047 (2004).
  • Rhie GE, Roehrl MH, Mourez M, Collier RJ, Mekalanos JJ, Wang JY. A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc. Natl Acad. Sci. USA100, 10925–10930 (2003).
  • Wang TT, Fellows PF, Leighton TJ, Lucas AH. Induction of opsonic antibodies to the γ-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS Immunol. Med. Microbiol.40, 231–237 (2004).
  • Aulinger BA, Roehrl MH, Mekalanos JJ, Kollier RJ, Wang JY. Combining anthrax vaccine and therapy: a dominant-negative inhibitor of anthrax toxin is also a potent and safe immunogen for vaccines. Infect. Immun.73(6), 3408–3414 (2005).
  • Kozel TR, Thorkildson P, Brandt S et al. Protective and immunochemical activities of monoclonal antibodies reactive with the Bacillus anthracis polypeptide capsule. Infect. Immun.75(1), 152–163 (2007).
  • Chabot DJ, Scorpio A, Toberi SA, Little SF, Norris SL, Friedlander AM. Anthrax capsule vaccine protects against experimental infection. Vaccine23(1), 43–47 (2004).
  • Wimer-Mackin S, Hinchcliffe M, Petrie CR et al. An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Vaccine24(18), 3953–3963 (2006).
  • Scorpio A, Chabot DJ, Day WA et al. Poly-γ-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis.Antimicrob. Agents Chemother.51(1), 215–222 (2007).
  • Aloni-Grinstein R, Gat O, Alboum Z, Velan B, Cohen S, Shafferman A. Oral spore vaccine based on live attenuated nontoxinogenic Bacillus anthracis expressing recombinant mutant protective antigen. Infect. Immun.73(7), 4043–4053 (2005).
  • Gaur R, Gupta P, Banerjea AC, Singh Y. Effect of nasal immunization with protective antigen of Bacillus anthracis on protective immune response against anthrax toxin. Vaccine20(21–22), 2836–2839 (2002).
  • Xu JJ, Zhang J, Liu SL et al. [Toxin-neutralizing monoclonal antibodies to the different domains of anthrax protective antigen]. [Article in Chinese]. Wei Sheng Wu Xue Bao45(6), 947–951 (2005).
  • Hepler RW, Kelly R, McNeely TB et al. A recombinant 63-kDa form of Bacillus anthracis protective antigen produced in the yeast Saccharomyces cerevisiae provides protection in rabbit and primate inhalational challenge models of anthrax infection. Vaccine24(10), 1501–1514 (2006).
  • Panchal RG, Halverson KM, Ribot W et al. Purified Bacillus anthracis lethal toxin complex formed in vitro and during infection exhibits functional and biological activity. J. Biol. Chem.280(11), 10834–10839 (2005).
  • Wasserman GM, Grabenstein JD, Pittman PR et al. Analysis of adverse events after anthrax immunization in US army medical personnel. J. Occup. Environ. Med.45(3), 222–233 (2003).
  • Enstone JE, Wale MC, Nguyen-Van-Tam JS, Pearson JC. Adverse medical events in British service personnel following anthrax vaccination. Vaccine21(13–14), 1348–1354 (2003).
  • Friedlander AM, Pittman PR, Parker GW. Anthrax vaccine: evidence for safety and efficacy against inhalational anthrax. JAMA282(22), 2104–2106 (1999).
  • Brachman PS, Gold H, Plotkin SA, Fekety FR, Werrin M, Ingraham NR. Field evaluation of a human anthrax vaccine. Am. J. Public Health52, 632–645 (1962).
  • Demicheli V, Rivetti D, Deeks JJ, Jefferson T, Pratt M. The effectiveness and safety of vaccines against human anthrax: a systematic review. Vaccine16(9–10), 880–884 (1998).
  • Hanson JF, Taft SC, Weiss AA. Neutralizing antibodies and persistence of immunity following anthrax vaccination. Clin. Vaccine Immunol.13(2), 208–213 (2006).
  • Pittman PR, Norris SL, Barrera Oro JG, Bedwell D, Cannon TL, McKee KT Jr. Patterns of antibody response in humans to the anthrax vaccine adsorbed (AVA) primary (six-dose) series. Vaccine24(17), 3654–3660 (2006).
  • Grunow R, Porsch-Ozcurumez M, Splettstoesser W et al. Monitoring of ELISA-reactive antibodies against anthrax protective antigen (PA), lethal factor (LF), and toxin-neutralising antibodies in serum of individuals vaccinated against anthrax with the PA-based UK anthrax vaccine. Vaccine25(18), 3679–3683 (2007).
  • Weiss S, Kobiler D, Levy H et al. Immunological correlates for protection against intranasal challenge of Bacillus anthracis spores conferred by a protective antigen-based vaccine in rabbits. Infect. Immun.74(1), 394–398 (2006).
  • US FDA. New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. Regulations 21CFR 314 and 601. US FDA. Department of Health and Human Services, MD, USA (2002).
  • Rhie GE, Park YM, Han JS, Yu JY, Seong WK, Oh HB. Efficacy of non-toxic deletion mutants of protective antigen from Bacillus anthracis.FEMS Immunol. Med. Microbiol.45(2), 341–347 (2005).
  • Keitel WA. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine. Expert Rev. Vaccines5(4), 417–430 (2006).
  • Mikszta JA, Sullivan VJ, Dean C et al. Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J. Infect. Dis.191(2), 278–288 (2005).
  • Pittman PR, Kim-Ahn G, Pifat D et al. Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine20(9–10), 1412–1420 (2002).
  • Mikszta JA, Dekker JP 3rd, Harvey NG et al. Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect. Immun.74(12), 6806–6810 (2006).
  • Duc le H, Hong HA, Atkins HS et al. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine25(2), 346–355 (2007).
  • Williamson ED, Hodgson I, Walker NJ et al. Immunogenicity of recombinant protective antigen and efficacy against aerosol challenge with anthrax. Infect. Immun.73, 5978–5987 (2005).
  • Gwinn W, Zhang M, Mon S et al. Scalable purification of Bacillus anthracis protective antigen from Escherichia coli.Protein Expr. Purif.45(1), 30–36 (2006).
  • Friedlander AM, Welkos SL, Ivins BE. Anthrax vaccines. Curr. Top. Microbiol. Immunol.271, 33–60 (2002).
  • Gorse GJ, Keitel W, Keyserling H et al. Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double-blinded, controlled, multicenter trial, Vaccine24(33–34), 5950–5959 (2006).
  • Jiang G, Joshi SB, Peek LJ et al. Anthrax vaccine powder formulations for nasal mucosal delivery. J. Pharm. Sci.95(1), 80–96 (2006).
  • Boyaka PN, Tafaro A, Fischer R, Leppla SH, Fujihashi K, McGhee JR. Effective mucosal immunity to anthrax: neutralizing antibodies and Th cell responses following nasal immunization with protective antigen. J. Immunol.170(11), 5636–5643 (2003).
  • Galen JE, Zhao L, Chinchilla M et al. Adaptation of the endogenous Salmonella enterica serovar Typhi clyA-encoded hemolysin for antigen export enhances the immunogenicity of anthrax protective antigen domain 4, expressed by the attenuated live-vector vaccine strain CVD 908-htrA. Infect. Immun.72(12), 7096–7106 (2004).
  • Garmory HS, Titball RW, Griffin KF, Hahn U, Bohm R, Beyer W. Salmonella enterica serovar Typhimurium expressing a chromosomally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge. Infect. Immun.71(7), 3831–3836 (2003).
  • Stokes MG, Titball RW, Neeson BN et al. Oral administration of a Salmonella-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.Infect. Immun.75(4), 1827–1834 (2007).
  • Smith ME, Koser M, Xiao S et al. Rabies virus glycoprotein as a carrier for anthrax protective antigen. Virology353(2), 344–356 (2006).
  • Shivachandra SB, Li Q, Peachman KK et al. Multicomponent anthrax toxin display and delivery using bacteriophage T4. Vaccine25(7), 1225–1235 (2007).
  • Shivachandra SB, Rao M, Janosi L et al. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc–capsid interactions: a strategy for efficient display of large full-length proteins. Virology345(1), 190–198 (2006).
  • Hull AK, Criscuolo CJ, Mett V et al. Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine23(17–18), 2082–2086 (2005).
  • Streatfield SJ. Engineered chloroplasts as vaccine factories to combat bioterrorism. Trends Biotechnol.24(8), 339–342 (2006).
  • Koya V, Moayeri M, Leppla SH, Daniell H. Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect. Immun.73(12), 8266–8274 (2005).
  • Flick-Smith HC, Eyles JE, Hebdon R et al. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect. Immun.70, 2022–2028 (2002).
  • Kenney RT, Yu J, Guebre-Xabier M et al. Induction of protective immunity against lethal anthrax challenge with a patch. J. Infect. Dis.190(4), 774–782 (2004).
  • Galloway DR, Baillie L. DNA vaccines against anthrax. Expert Opin. Biol. Ther.4(10), 1661–1667 (2004).
  • McConnell MJ, Hanna PC, Imperiale MJ. Adenovirus-based prime–boost immunization for rapid vaccination against anthrax. Mol. Ther.15(1), 203–210 (2007).
  • Sellman BR, Mourez M, Collier RJ. Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science292(5517), 695–697 (2001).
  • Sellman BR, Nassi S, Collier RJ. Point mutations in anthrax protective antigen that block translocation. J. Biol. Chem.276(11), 8371–8376 (2001).
  • Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA. Identification of the cellular receptor for anthrax toxin. Nature414(6860), 225–229 (2001).
  • Wigelsworth DJ, Krantz BA, Christensen KA, Lacy DB, Juris SJ, Collier RJ. Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen. J. Biol. Chem.279(22), 23349–23356 (2004).
  • Ding Z, Bradley KA, Amin Arnaout M, Xiong JP. Expression and purification of functional human anthrax toxin receptor (ATR/TEM8) binding domain from Escherichia coli.Protein Expr. Purif.49(1), 121–128 (2006).
  • Rai P, Padala C, Poon V et al. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nat. Biotechnol.24(5), 582–586 (2006).
  • Basha S, Rai P, Poon V et al. Polyvalent inhibitors of anthrax toxin that target host receptors. Proc. Natl Acad. Sci. USA103(36), 13509–13513 (2006).
  • Wei W, Lu Q, Chaudry GJ, Leppla SH, Cohen SN. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell124(6), 1141–1154 (2006).
  • Bann JG, Cegelski L, Hultgren SJ. LRP6 holds the key to the entry of anthrax toxin. Cell124(6), 1119–1121 (2006).
  • Starnbach MN, Collier RJ. Anthrax delivers a lethal blow to host immunity. Nat. Med.9(8), 996–997 (2003).
  • Zhang J, XuJ, Li D et al. The 2β2–2β3 loop of anthax protective antigen contains a dominant neutralizing epitope. Biochem. Biophys. Res. Commun.341(4), 1164–1171 (2006).
  • Karginov VA, Yohannes A, Robinson TM, Fahmi NE, Alibek K, Hecht SM. β-cyclodextrin derivatives that inhibit anthrax lethal toxin. Bioorg. Med. Chem.14(1), 33–40 (2006).
  • Karginov VA, Nestorovich EM, Moayeri M, Leppla SH, Bezrukov SM. Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc. Natl Acad. Sci. USA102(42), 15075–15080 (2005).
  • Karginov VA, Nestorovich EM, Yohannes A et al. Search for cyclodextrin-based inhibitors of anthrax toxins: synthesis, structural features, and relative activities. Antimicrob. Agents Chemother.50(11), 3740–3753 (2006).
  • Backer MV, Patel V, Jehning BT, Claffey KP, Karginov VA, Backer JM. Inhibition of anthrax protective antigen outside and inside the cell. Antimicrob. Agents Chemother.51(1), 245–251 (2007).
  • Komiyama T, Swanson JA, Fuller RS. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Antimicrob. Agents Chemother.49(9), 3875–3882 (2005).
  • Kacprzak MM, Peinado JR, Than ME et al. Inhibition of furin by polyarginine-containing peptides: nanomolar inhibition by nona-D-arginine. J. Biol. Chem.279(35), 36788–36794 (2004).
  • Jiao GS, Cregar L, Wang J et al. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine. Proc. Natl Acad. Sci. USA103(52), 19707–19712 (2006).
  • Sarac MS, Peinado JR, Leppla SH, Lindberg I. Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo.Infect. Immun.72(1), 602–605 (2004).
  • Opal SM, Artenstein AW, Cristofaro PA et al. Inter-α-inhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication. Infect. Immun.73(8), 5101–5105 (2005).
  • Pini A, Runci Y, Falciani C, Lelli B, Brunetti J, Pileri S et al. Stable peptide inhibitors prevent binding of lethal and oedema factors to protective antigen and neutralize anthrax toxin in vivo.Biochem. J.395(1), 157–163 (2006).
  • Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell. Biol.160(3), 321–328 (2003).
  • Herrmann JE, Wang S, Zhang C et al. Passive immunotherapy of Bacillus anthracis pulmonary infection in mice with antisera produced by DNA immunization. Vaccine24(31–32), 5872–5880 (2006).
  • Casadevall A. Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg. Infect. Dis.8, 833–841 (2002).
  • Pittman PR, Leitman SF, Oro JG et al. Protective antigen and toxin neutralization antibody patterns in anthrax vaccinees undergoing serial plasmapheresis. Clin. Diagn. Lab. Immunol.12, 713–721 (2005).
  • Mohamed N, Clagett M, Li J et al. A high-affinity monoclonal antibody to anthrax protective antigen passively protects rabbits before and after aerosolized Bacillus anthracis spore challenge. Infect. Immun.73(2), 795–802 (2005).
  • Cui X, Li Y, Moayeri M et al. Late treatment with a protective antigen-directed monoclonal antibody improves hemodynamic function and survival in a lethal toxin-infused rat model of anthrax sepsis. J. Infect. Dis.191(3), 422–434 (2005).
  • Chen Z, Moayeri M, Zhou YH et al. Efficient neutralization of anthrax toxin by chimpanzee monoclonal antibodies against protective antigen. J. Infect. Dis.193(5), 625–633 (2006).
  • Peterson JW, Comer JE, Noffsinger DM et al. Human monoclonal anti-protective antigen antibody completely protects rabbits and is synergistic with ciprofloxacin in protecting mice and guinea pigs against inhalational anthrax. Infect. Immun.74(2), 1016–1024 (2006).
  • Sawada-Hirai R, Jiang I, Wang F et al. Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed. J. Immune Based Ther. Vaccines2(1), 5 (2004).
  • Wild MA, Xin H, Maruyama T et al. Human antibodies from immunized donors are protective against toxin in vivo.Nat. Biotechnol.21(11), 1305–1306 (2003).
  • Mabry R, Rani M, Geiger R et al. Passive protection against anthrax by using a high-affinity antitoxin antibody fragment lacking an Fc region. Infect. Immun.73(12), 8362–8368 (2005).
  • Kim J, Choi MK, Koo BS, Yoon MY. Development of high-throughput assay of lethal factor using native substrate. Anal. Biochem.341(1), 33–39 (2005).
  • Moayeri M, Wiggins JF, Lindeman RE, Leppla SH. Cisplatin inhibition of anthrax lethal toxin. Antimicrob. Agents Chemother.50(8), 2658–2665 (2006).
  • Kocer SS, Walker SG, Zerler B, Golub LM, Simon SR. Metalloproteinase inhibitors, nonantimicrobial chemically modified tetracyclines, and ilomastat block Bacillus anthracis lethal factor activity in viable cells. Infect. Immun.73(11), 7548–7557 (2005).
  • Peinado JR, Kacprzak MM, Leppla SH, Lindberg I. Cross-inhibition between furin and lethal factor inhibitors. Biochem. Biophys. Res. Commun.321(3), 601–605 (2004).
  • Min DH, Tang WJ, Mrksich M. Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nature Biotech22, 717–723 (2004).
  • Kim J, Yoon MY. Anthrax lethal factor: Critical virulence factor of pathogenesis. Toxin Reviews25(1), 109–124 (2006).
  • Melnyk RA, Hewitt KM, Lacy DB et al. Structural determinants for the binding of anthrax lethal factor to oligomeric protective antigen. J. Biol. Chem.281(3), 1630–1635 (2006).
  • Kuzmic P, Cregar L, Millis SZ, Goldman M. Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides. FEBS J.273(13), 3054–3062 (2006).
  • Jiao GS, Simo O, Nagata M et al. Selectively guanidinylated derivatives of neamine. Syntheses and inhibition of anthrax lethal factor protease. Bioorg. Med. Chem. Lett.16(19), 5183–5189 (2006).
  • Kim C, Gajendran N, Mittrucker H et al. Human α-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc. Natl Acad. Sci. USA102(13), 4830–4835 (2005).
  • Wang W, Mulakala C, Ward SC et al. Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. J. Biol. Chem.281(43), 32755–32764 (2006).
  • Shoop WL, Xiong Y, Wiltsie J et al. Anthrax lethal factor inhibition. Proc. Natl Acad. Sci. USA102(22), 7958–7963 (2005).
  • Goldman ME, Cregar L, Nguyen D, Simo O, O’Malley S, Humphreys T. Cationic polyamines inhibit anthrax lethal factor protease. BMC Pharmacol.6, 8 (2006).
  • Schepetkin IA, Khlebnikov AI, Kirpotina LN, Quinn MT. Novel small-molecule inhibitors of anthrax lethal factor identified by high-throughput screening. J. Med. Chem.49(17), 5232–5244 (2006).
  • DeCathelineau AM, Bokoch GM. Peptide inhibitors MAP the way towards fighting anthrax pathogenesis. Biochem. J.395(1), e1–e3 (2006).
  • Dell’Aica I, Dona M, Tonello F et al. Potent inhibitors of anthrax lethal factor from green tea. EMBO Rep.5(4), 418–422 (2004).
  • Xiong Y, Wiltsie J, Woods A et al. The discovery of a potent and selective lethal factor inhibitor for adjunct therapy of anthrax infection. Bioorg. Med. Chem. Lett.16(4), 964–968 (2006).
  • Artenstein AW, Opal SM, Cristofaro P et al. Chloroquine enhances survival in Bacillus anthracis intoxication. J. Infect. Dis.190(9), 1655–1660 (2004).
  • Lim NK, Kim JH, Oh MS et al. An anthrax lethal factor-neutralizing monoclonal antibody protects rats before and after challenge with anthrax toxin. Infect. Immun.73(10), 6547–6551 (2005).
  • Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR. Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect. Immun.69(7), 4509–4515 (2001).
  • Cooksey BA, Sampey GC, Pierre JL et al. Production of biologically active Bacillus anthracis edema factor in Escherichia coli.Biotechnol. Prog.20(6), 1651–1659 (2004).
  • Dong DY, Xu JJ, Song XH et al. [Expression and analysis of biological activity of the recombination anthrax edema factor]. Wei Sheng Wu Xue Bao45(3) 459–462 (2005).
  • Shen Y, Zhukovskaya NL, Zimmer MI et al. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA101(9), 3242–3247 (2004).
  • Zeng M, Xu Q, Hesek ED, Pichichero ME. N-fragment of edema factor as a candidate antigen for immunization against anthrax. Vaccine24(5), 662–670 (2006).
  • Duverger A, Jackson RJ, van Ginkel FW et al.Bacillus anthracis edema toxin acts as an adjuvant for mucosal immune responses to nasally administered vaccine antigens. J. Immunol.176(3), 1776–1783 (2006).
  • Gat O, Grosfeld H, Ariel N et al. Search for Bacillus anthracis potential vaccine candidates by a functional genomic-serologic screen. Infect. Immun.74(7), 3987–4001 (2006).
  • Shannon JG, Ross CL, Koehler TM, Rest RF. Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect. Immun.71(6), 3183–3189 (2003).
  • Mosser EM, Rest RF. The Bacillus anthracis cholesterol-dependent cytolysin, anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol.6, 56 (2006).
  • Antelmann H, Williams RC, Miethke M et al. The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1–2. Proteomics5(14), 3684–3695 (2005).
  • Lamonica JM, Wagner M, Eschenbrenner M, Williams LE, Miller TL, Patra G. Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infect. Immun.73(6), 3646–3658 (2005).
  • Chitlaru T, Gat O, Grosfeld H, Inbar I, Gozlan Y, Shafferman A. Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infect. Immun.75(6), 2841–2852 (2007).
  • Delvecchio VG, Connolly JP, Alefantis TG et al. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.Appl. Environ. Microbiol.72(9), 6355–6363 (2006).
  • Huang CM, Elmets CA, Tang DC, Li F, Yusuf N. Proteomics reveals that proteins expressed during the early stage of Bacillus anthracis infection are potential targets for the development of vaccines and drugs. Genomics Proteomics Bioinformatics2(3), 143–151 (2004).
  • Maresso AW, Chapa TJ, Schneewind O. Surface protein IsdC and sortase B are required for heme-iron scavenging of Bacillus anthracis.J. Bacteriol.188(23), 8145–8152 (2006).
  • Zhang R, Wu R, Joachimiak G et al. Structures of sortase B from Staphylococcus aureus and Bacillus anthracis reveal catalytic amino acid triad in the active site. Structure12(7), 1147–1156 (2004).
  • Mikshis NI, Korsakova Aiu, Bolotnikova M, Novikova LV, Popov IuA. [Role of the components of the S-layer in immunogenicity of Bacillus anthracis]. [Article in Russian]. Zh. Mikrobiol. Epidemiol. Immunobiol.(1), 29–32 (2006).
  • Grenha R, Levdikov VM, Fogg MJ et al. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis.Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun.61(Pt 5), 459–462 (2005).
  • Popov SG, Popova TG, Hopkins S et al. Effective antiprotease-antibiotic treatment of experimental anthrax. BMC Infect. Dis.5(1), 25 (2005).
  • Tinsley E, Khan SA. A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis.J. Bacteriol.188(8), 2829–2835 (2006).
  • Fisher N, Hanna P. Characterization of Bacillus anthracis germinant receptors in vitro.J. Bacteriol.187(23), 8055–8062 (2005).
  • Liu H, Bergman NH, Thomason B et al. Formation and composition of the Bacillus anthracis endospore. J. Bacteriol.186(1), 164–178 (2004).
  • Daubenspeck JM, Zeng H, Chen P et al. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J. Biol. Chem.279(30), 30945–30953 (2004).
  • Steichen C, Chen P, Kearney JF, Turnbough CL Jr. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol.185(6), 1903–1910 (2003).
  • Boydston JA, Yue L, Kearney JF, Turnbough CL Jr. The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis.J. Bacteriol.188(21), 7440–7448 (2006).
  • Redmond C, Baillie LW, Hibbs S, Moir AJ, Moir A. Identification of proteins in the exosporium of Bacillus anthracis.Microbiology150(Pt 2), 355–363 (2004).
  • Hahn UK, Boehm R, Beyer W. DNA vaccination against anthrax in mice–combination of anti-spore and anti-toxin components. Vaccine24(21), 4569–4571 (2006).
  • Mehta AS, Saile E, Zhong W et al. Synthesis and antigenic analysis of the BclA glycoprotein oligosaccharide from the Bacillus anthracis exosporium. Chemistry12(36), 9136–9149 (2006).
  • Sylvestre P, Couture-Tosi E, Mock M. Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the Bacillus anthracis exosporium. J. Bacteriol.187(15), 5122–5128 (2005).
  • Chada VG, Sanstad EA, Wang R, Driks A. Morphogenesis of bacillus spore surfaces. J. Bacteriol.185(21), 6255–6261 (2003).
  • Kim HS, Sherman D, Johnson F, Aronson AI. Characterization of a major Bacillus anthracis spore coat protein and its role in spore inactivation. J. Bacteriol.186(8), 2413–2417 (2004).
  • Drysdale M, Heninger S, Hutt J, Chen Y, Lyons CR, Koehler TM. Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J.24(1), 221–227 (2005).
  • Heninger S, Drysdale M, Lovchik J et al. Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. Infect. Immun.74(11), 6067–6074 (2006).
  • Kuhn JF, Hoerth P, Hoehn ST, Preckel T, Tomer KB. Proteomics study of anthrax lethal toxin-treated murine macrophages. Electrophoresis27(8), 1584–1597 (2006).
  • Batty S, Chow EM, Kassam A, Der SD, Mogridge J. Inhibition of mitogen-activated protein kinase signalling by Bacillus anthracis lethal toxin causes destabilization of interleukin-8 mRNA. Cell. Microbiol.8(1), 130–138 (2006).
  • Webster JI, Moayeri M, Sternberg EM. Novel repression of the glucocorticoid receptor by anthrax lethal toxin. Ann. NY Acad. Sci.1024, 9–23 (2004).
  • Webster JI, Sternberg EM. Anthrax lethal toxin represses glucocorticoid receptor (GR) transactivation by inhibiting GR-DNA binding in vivo.Mol. Cell. Endocrinol.241(1–2), 21–31 (2005).
  • Kliewer SA. Anthrax mounts a nuclear attack on glucocorticoid signaling. Trends Pharmacol. Sci.24(11), 558–559 (2003).
  • Webster JI, Tonelli LH, Moayeri M, Simons SS Jr, Leppla SH, Sternberg EM. Anthrax lethal factor represses glucocorticoid and progesterone receptor activity. Proc. Natl Acad. Sci. USA100(10), 5706–5711 (2003).
  • Alileche A, Squires RC, Muehlbauer SM, Lisanti MP, Brojatsch J. Mitochondrial impairment is a critical event in anthrax lethal toxin-induced cytolysis of murine macrophages. Cell Cycle5(1), 100–106 (2006).
  • Piris-Gimenez A, Paya M, Lambeau G et al. In vivo protective role of human group IIa phospholipase A2 against experimental anthrax. J. Immunol.175(10), 6786–6791 (2005).
  • Gimenez AP, Wu YZ, Paya M, Delclaux C, Touqui L, Goossens PL. High bactericidal efficiency of type iia phospholipase A2 against Bacillus anthracis and inhibition of its secretion by the lethal toxin. J. Immunol.173(1), 521–530 (2004).
  • Abergel RJ, Wilson MK, Arceneaux JE et al. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl Acad. Sci. USA103(49), 18499–18503 (2006).
  • Zhang CG, Chromy BA, McCutchen-Maloney SL. Host–pathogen interactions: a proteomic view. Expert Rev. Proteomics2(2), 187–202 (2005).
  • Karginov VA, Robinson TM, Riemenschneider J et al. Treatment of anthrax infection with combination of ciprofloxacin and antibodies to protective antigen of Bacillus anthracis.FEMS Immunol. Med. Microbiol.40(1), 71–74 (2004).
  • Vietri NJ, Purcell BK, Lawler JV et al. Short-course postexposure antibiotic prophylaxis combined with vaccination protects against experimental inhalational anthrax. Proc. Natl Acad. Sci. USA103(20), 7813–7816 (2006).
  • Fowler RA, Sanders GD, Bravata DM et al. Cost–effectiveness of defending against bioterrorism: a comparison of vaccination and antibiotic prophylaxis against anthrax. Ann. Intern. Med.142(8), 601–610 (2005).
  • Bryskier A. Bacillus anthracis and antibacterial agents. Clin. Microbiol. Infect.8(8), 467–478 (2002).
  • Friedlander AM, Welkos SL, Pitt ML et al. Postexposure prophylaxis against experimental inhalation anthrax. J. Infect. Dis.167, 1239–1243 (1993).
  • Mock M, Mignot T. Anthrax toxins and the host: a story of intimacy. Cell. Microbiol.5(1), 15–23 (2003).
  • Athamna A, Athamna M, Abu-Rashed N, Medlej B, Bast DJ, Rubinstein E. Selection of Bacillus anthracis isolates resistant to antibiotics. J. Antimicrob. Chemother.54, 424–428 (2004).
  • Yoong P, Schuch R, Nelson D, Fischetti VA. PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis.J. Bacteriol.188(7), 2711–2714 (2006).
  • Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis.Nature418(6900), 884–889 (2002).
  • Porter CJ, Schuch R, Pelzek AJ et al. The 1.6 A crystal structure of the catalytic domain of PlyB, a bacteriophage lysin active against Bacillus anthracis.J. Mol. Biol.366(2), 540–550 (2007).
  • Barrow EW, Bourne PC, Barrow WW. Functional cloning of Bacillus anthracis dihydrofolate reductase and confirmation of natural resistance to trimethoprim. Antimicrob. Agents Chemother.48(12), 4643–4649 (2004).
  • Supuran C, Scozzafava A, Clare BW. Bacterial protease inhibitors. Med. Res. Rev.22(4), 329–372 (2002).
  • Abbenante G, Fairlie DP. Protease inhibitors in the clinic. Med. Chem.1(1), 71–104 (2005).
  • Baldari CT, Tonello F, Paccani SR, Montecucco C. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol.27(9), 434–440 (2006).
  • Moayeri M, Leppla SH. The roles of anthrax toxin in pathogenesis. Curr. Opin. Microbiol.1, 19–24 (2004).

Website

  • National Institute of Allergy and Infectious Diseases (NIAID), Department of Health and Human Services, USA. Progress Report of NIAID BIODEFENSE, 15–23 (2006) http://biodefense.niaid.nih.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.