1,491
Views
397
CrossRef citations to date
0
Altmetric
Review

Alternative mechanisms of action of cationic antimicrobial peptides on bacteria

&
Pages 951-959 | Published online: 10 Jan 2014

References

  • Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob. Agents Chemother.43(6), 1317–1323 (1999).
  • Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin. Microbiol. Rev.19(3), 491–511 (2006).
  • Brown KL, Hancock REW. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol.18(1), 24–30 (2006).
  • Powers JP, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides24(11), 1681–1691 (2003).
  • Hancock REW, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol.24(12), 1551–1557 (2006).
  • Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol.4(7), 529–536 (2006).
  • Kraus D, Peschel A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr. Top. Microbiol. Immunol.306, 231–250 (2006).
  • Hancock REW, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord.2(1), 79–83 (2002).
  • Marshall SH, Arenas G. Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron. J. Biotechnol.6(2), 265–272 (2003).
  • Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci.62(22), 2588–2598 (2005).
  • Chen X, Niyonsaba F, Ushio H et al. Synergistic effect of antibacterial agents human β-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J. Dermatol. Sci.40(2), 123–132 (2005).
  • Hilpert K, Volkmer-Engert R, Walter T, Hancock REW. High-throughput generation of small antibacterial peptides with improved activity. Nat. Biotechnol.23(8), 1008–1012 (2005).
  • Blondelle SE, Lohner K. Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure–activity relationship studies. Biopolymers55(1), 74–87 (2000).
  • Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim. Biophys. Acta1758(9), 1215–1223 (2006).
  • Hancock REW. Peptide antibiotics. Lancet349(9049), 418–422 (1997).
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol.3(3), 238–250 (2005).
  • Wu M, Maier E, Benz R, Hancock REW. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry38(22), 7235–7242 (1999).
  • Yang L, Harroun TA, Heller WT, Weiss TM, Huang HW. Neutron off-plane scattering of aligned membranes. I. Method of measurement. Biophys. J.75(2), 641–645 (1998).
  • Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry35(35), 11361–11368 (1996).
  • Gazit E, Boman A, Boman HG, Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry34(36), 11479–11488 (1995).
  • Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta1758(9), 1529–1539 (2006).
  • Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem. Sci.20(11), 460–464 (1995).
  • Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother.46(3), 605–614 (2002).
  • Hong RW, Shchepetov M, Weiser JN, Axelsen PH. Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob. Agents Chemother.47(1), 1–6 (2003).
  • Haukland HH, Ulvatne H, Sandvik K, Vorland LH. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett.508(3), 389–393 (2001).
  • Park CB, Kim MS, Kim SC. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun.218(1), 408–413 (1996).
  • Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun.244(1), 253–257 (1998).
  • Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA97(15), 8245–8250 (2000).
  • Hirsch JG. Bactericidal action of histone. J. Exp. Med.108(6), 925–944 (1958).
  • Birkemo GA, Luders T, Andersen O, Nes IF, Nissen-Meyer J. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim. Biophys. Acta1646(1–2), 207–215 (2003).
  • Park IY, Park CB, Kim MS, Kim SC. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett.437(3), 258–262 (1998).
  • Hsu C-H, Chen C, Jou M-L et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucl. Acids Res.33(13), 4053–4064 (2005).
  • Tomasinsig L, Zanetti M. The cathelicidins – structure, function and evolution. Curr. Protein Pept. Sci.6(1), 23–34 (2005).
  • Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem.271(32), 19298–19303 (1996).
  • Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett.160(1), 91–96 (1998).
  • Marchand C, Krajewski K, Lee HF et al. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucl. Acids Res.34(18), 5157–5165 (2006).
  • Friedrich CL, Rozek A, Patrzykat A, Hancock REW. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria. J. Biol. Chem.276(26), 24015–24022 (2001).
  • Agerberth B, Lee JY, Bergman T et al. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem.202(3), 849–854 (1991).
  • Shi J, Ross CR, Chengappa MM, Blecha F. Identification of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterial peptide from the small intestine. J. Leukoc. Biol.56(6), 807–811 (1994).
  • Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun.61(7), 2978–2984 (1993).
  • Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem.272(18), 12008–12013 (1997).
  • Otvos L Jr, O I, Rogers ME et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry39(46), 14150–14159 (2000).
  • Kragol G, Lovas S, Varadi G et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry40(10), 3016–3026 (2001).
  • Salomon RA, Farias RN. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J. Bacteriol.174(22), 7428–7435 (1992).
  • Sahl HG, Pag U, Bonness S et al. Mammalian defensins: structures and mechanism of antibiotic activity. J. Leukoc. Biol.77(4), 466–475 (2005).
  • Brotz H, Josten M, Wiedemann I et al. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol.30(2), 317–327 (1998).
  • Breukink E, Wiedemann I, van Kraaij C et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science286(5448), 2361–2364 (1999).
  • Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov.5(4), 321–332 (2006).
  • Bierbaum G, Sahl HG. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol.169(12), 5452–5458 (1987).
  • Hasper HE, Kramer NE, Smith JL et al. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science313(5793), 1636–1637 (2006).
  • Morency H, Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC. Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Can. J. Microbiol.47(4), 322–331 (2001).
  • Amsterdam D. Susceptibility testing of antimicrobials in liquid media. In: Antibiotics in Laboratory Medicine. Lorian V (Ed.). Williams and Wilkins, MD, USA 52–111 (1996).
  • Yan H, Hancock REW. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob. Agents Chemother.45(5), 1558–1560 (2001).
  • Milona P, Townes CL, Bevan RM, Hall J. The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochem. Biophys. Res. Commun.356(1), 169–174 (2007).
  • Scott MG, Yan H, Hancock REW. Biological properties of structurally related α-helical cationic antimicrobial peptides. Infect. Immun.67(4), 2005–2009 (1999).
  • Cirioni O, Giacometti A, Kamysz W et al. In vitro activities of tachyplesin III against Pseudomonas aeruginosa. Peptides28(4), 747–751 (2007).
  • Otvos L Jr, de Olivier Inacio V, Wade JD, Cudic P. Prior antibacterial peptide-mediated inhibition of protein folding in bacteria mutes resistance enzymes. Antimicrob. Agents Chemother.50(9), 3146–3149 (2006).
  • Mookherjee N, Brown KL, Bowdish DM et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol.176(4), 2455–2464 (2006).
  • Dennis EA, Rhee SG, Billah MM, Hannun YA. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J.5(7), 2068–2077 (1991).
  • Qu XD, Lehrer RI. Secretory phospholipase A2 is the principal bactericide for staphylococci and other Gram-positive bacteria in human tears. Infect. Immun.66(6), 2791–2797 (1998).
  • Zhao H, Kinnunen PK. Modulation of the activity of secretory phospholipase A2 by antimicrobial peptides. Antimicrob. Agents Chemother.47(3), 965–971 (2003).
  • Jia X, Patrzykat A, Devlin RH et al. Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl. Environ. Microbiol.66(5), 1928–1932 (2000).
  • Blondelle SE, Perez-Paya E, Houghten RA. Synthetic combinatorial libraries: novel discovery strategy for identification of antimicrobial agents. Antimicrob. Agents Chemother.40(5), 1067–1071 (1996).
  • Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. Nature443(7113), 867–869 (2006).
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature415(6870), 389–395 (2002).
  • Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim. Biophys. Acta1462(1–2), 157–183 (1999).

Websites

  • Anti-infective peptides laboratory. Tossi group www.bbcm.units.it/∼tossi/amsdb.html
  • Center for Network Biology of Infection and Immunity www.cnbi2.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.