128
Views
27
CrossRef citations to date
0
Altmetric
Review

Prevention and treatment of enterohemorrhagic Escherichia coli infections in humans

, , &
Pages 101-108 | Published online: 10 Jan 2014

References

  • Gerber A, Karch H, Allerberger F, Verweyen HM, Zimmerhackl LB. Clinical course and the role of Shiga toxin-producing Escherichia coli infection in the hemolytic–uremic syndrome in pediatric patients, 1997–2000, in Germany and Austria: a prospective study. J. Infect. Dis.186(4), 493–500 (2002).
  • Tarr PI, Gordon CA, Chandler WL. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet365(9464), 1073–1086 (2005).
  • Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N. Engl. J. Med.342(26), 1930–1936 (2000).
  • Grif K, Orth D, Lederer I et al. Importance of environmental transmission in cases of EHEC O157 causing hemolytic uremic syndrome. Eur. J. Clin. Microbiol. Infect. Dis.24(4), 268–271 (2005).
  • Karch H, Tarr PI, Bielaszewska M. Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol.295(6–7), 405–418 (2005).
  • Friedrich AW, Borell J, Bielaszewska M, Fruth A, Tschäpe H, Karch H. Shiga toxin 1c-producing Escherichia coli strains: phenotypic and genetic characterization and association with human disease. J. Clin. Microbiol.41(6), 2448–2453 (2003).
  • Zhang W, Bielaszewska M, Kuczius T, Karch H. Identification, characterization, and distribution of a Shiga toxin 1 gene variant stx1c in Escherichia coli strains isolated from humans. J. Clin. Microbiol.40(4), 1441–1446 (2002).
  • Kuczius T, Bielaszewska M, Friedrich AW, Zhang W. A rapid method for the discrimination of genes encoding classical Shiga toxin (Stx) 1 and its variants, stx1c and stx1d, in Escherichia coli. Mol. Nutr. Food Res.48(7), 515–521 (2004).
  • Schmitt CK, McKee ML, O’Brien AD. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H-strain E32511. Infect. Immun.59(3), 1065–1073 (1991).
  • Melton-Celsa AR, Darnell SC, O’Brien AD. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect. Immun.64(5), 1569–1576 (1996).
  • Pierard D, Muyldermas G, Moriau L, Stevens D, Lauwers S. Identification of a new Verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates. J. Clin. Microbiol.36(11), 3317–3322 (1998).
  • Bielaszewska M, Friedrich AW, Aldick T, Schurk-Bulgrin R, Karch H. Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. Clin. Infect.43(9), 1160–1167 (2006).
  • Sonntag AK, Bielaszewska M, Mellmann A et al. Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interactions with intestinal epithelial cells. Appl. Environ. Microbiol.71(12), 8855–8863 (2005).
  • Weinstein DL, Jackson MP, Samuel JE, Holmes RK, O’Brien AD. Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine. J. Bacteriol.170(9), 4223–4230 (1988).
  • Schmidt H, Scheef J, Morabito S, Caprioli A, Wieler L, Karch H. A new Shiga toxin variant (stx2f) from Escherichia coli isolated from pigeons. Appl. Environ. Microbiol.66(3), 1205–1208 (2000).
  • Sonntag AK, Zenner E, Karch H, Bielaszewska M. Pigeons as a possible reservoir of Shiga toxin 2f-producing Escherichia coli pathogenic to humans. Berl. Munch. Tierarztl. Wochenschr.118(11–12), 464–470 (2005).
  • Leung PH, Peiris JS, Ng WW, Robins-Browne RM, Bettelheim KA, Yam WC. A newly discovered verotoxin variant, VT2g, produced by bovine verocytotoxigenic Escherichia coli. Appl. Environ. Microbiol.69(12), 7549–7553 (2003).
  • Orth D, Grif K, Khan AB, Naim A, Dierich MP, Würzner R. The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome. Diagn. Microbiol. Infect. Dis.59(3), 235–242 (2007).
  • Ling H, Boodhoo A, Hazes B et al. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry37(7), 1777–1788 (1998).
  • Friedrich AW, Bielaszewska M, Zhang WL et al.Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis.185(1), 74–84 (2002).
  • Welinder-Olsson C, Kaijser B. Enterohemorrhagic Escherichia coli (EHEC). Scand. J. Infect. Dis.37(6–7), 405–416 (2005).
  • Orth D, Grif K, Dierich MP, Würzner R. Prevalence, structure and expression of urease genes in Shiga toxin-producing Escherichia coli from humans and the environment. Int. J. Hyg. Environ. Health209(6), 513–520 (2006).
  • Orth D, Grif K, Dierich MP, Würzner R. Variability in tellurite resistance and the ter gene cluster among Shiga toxin-producing Escherichia coli isolated from humans, animals and food. Res. Microbiol.158(2), 105–111 (2007).
  • Orth D, Grif K, Dierich MP, Würzner R. Cytolethal distending toxins in Shiga toxin-producing Escherichia coli: alleles, serotype distribution and biological effects. J. Med. Microbiol.55(11), 1487–1492 (2006).
  • Van Damme-Lombaerts R, Proesmans W, Van Damme B et al. Heparin plus dipyridamole in childhood hemolytic–uremic syndrome: a prospective, randomized study. J. Pediatr.113(5), 913–918 (1988).
  • Robson WL, Fick GH, Jadavji T, Leung AK. The use of intravenous γglobulin in the treatment of typical hemolytic uremic syndrome. Pediatr. Nephrol.5(3), 289–292 (1991).
  • Perez N, Spizzirri F, Rahman R, Suarez A, Larrubia C, Lasarte P. Steroids in the hemolytic uremic syndrome. Pediatr. Nephrol.12(2), 101–104 (1998).
  • O’Regan S, Chesney RW, Mongeau JG, Robitaille P. Aspirin and dipyridamole therapy in the hemolytic–uremic syndrome. J. Pediatr.97(3), 473–476 (1980).
  • Rousseau E, Blais N, O’Regan S. Decreased necessity for dialysis with loop diuretic therapy in hemolytic uremic syndrome. Clin. Nephrol.34(1), 22–25 (1990).
  • Gianviti A, Perna A, Caringella A et al. Plasma exchange in children with hemolytic–uremic syndrome at risk of poor outcome. Am. J. Kidney Dis.22(2), 264–266 (1993).
  • Ikeda K, Ida O, Kimoto K, Takatorige T, Nakanishi N, Tatara K. Effect of early fosfomycin treatment on prevention of hemolytic uremic syndrome accompanying Escherichia coli O157:H7 infection. Clin. Nephrol.52(6), 357–362 (1999).
  • Slutsker L, Ries AA, Maloney K, Wells JG, Greene KD, Griffin PM. A nationwide case-control study of Escherichia coli O157:H7 infection in the United States. J. Infect. Dis.177(4), 962–966 (1998).
  • Ito T, Akino E, Hiramatsu K. Evaluation of antibiotics used for enterohemorrhagic Escherichia coli O157 enteritis – effect of various antibiotics on extracellular release of verotoxin. Kansenshogaku Zasshi71(2), 130–135 (1997).
  • Nasu T, Okamoto K, Nakanishi T, Nishino T. in vitro antibacterial activity of faropenem, a novel penem antibiotic, against enterohemorrhagic Escherichia coli O157 strains. Jpn. J. Antibiot.52(8), 541–553 (1999).
  • Yoh M, Frimpong EK, Honda T. Effect of antimicrobial agents, esp. fosfomycin, on the production and release of vero toxin by enterohaemorrhagic Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol.19(1), 57–64 (1997).
  • Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DWK. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis.181(2), 664–670 (2000).
  • Murakami J, Kishi K, Hirai K, Hiramatsu K, Yamasaki T, Nasu M. Macrolides and clindamycin suppress the release of Shiga-like toxins from Escherichia coli O157:H7 in vitro. Int. J. Antimicrob. Agents15(2), 103–109 (2000).
  • Takahashi K, Narita K, Kato Y et al. Low-level release of Shiga-like toxin (verocytotoxin) and endotoxin from enterohemorrhagic Escherichia coli treated with imipenem. Antimicrob. Agents Chemother.41(10), 2295–2296 (1997).
  • Yoshimura K, Fujii J, Taniguchi H, Yoshida S. Chemotherapy for enterohemorrhagic Escherichia coli O157:H7 infection in a mouse model. FEMS Immunol. Med. Microbiol.26(2), 101–108 (1999).
  • Kimmitt PT, Harwood CR, Barer MR. Toxin gene expression by shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis.6(5), 458–465 (2000).
  • Grif K, Dierich MP, Karch H, Allerberger F. Strain-specific differences in the amount of shiga toxin released from enterohemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis.17(11), 761–766 (1998).
  • Ohara T, Kojio S, Taneike I et al. Effects of azithromycin on Shiga toxin production by Escherichia coli and subsequent host inflammatory response. Antimicrob. Agents Chemother.46(11), 3478–3483 (2002).
  • Paton JC, Rogers TJ, Morona R, Paton AW. Oral administration of formaldehyde-killed recombinant bacteria expressing a mimic of the Shiga toxin receptor protects mice from fatal challenge with Shiga-toxigenic Escherichia coli. Infect. Immun.69(3), 1389–1393 (2001).
  • Mulvey GL, Marcato P, Kitov PI, Sadowska J, Bundle DR, Armstrong GD. Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands. J. Infect. Dis.187(4), 640–649 (2003).
  • Nishikawa K, Matsuoka K, Kita E et al. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc. Natl Acad. Sci. USA99(11), 7669–7674 (2002).
  • Watanabe M, Matsuoka K, Kita E et al. Oral therapeutic agents with highly clustered globotriose for treatment of Shiga toxigenic Escherichia coli infections. J. Infect. Dis.189(3), 360–368 (2004).
  • Nishikawa K, Matsuoka K, Watanabe M et al. Identification of the optimal structure required for a Shiga toxin neutralizer with oriented carbohydrates to function in the circulation. J. Infect. Dis.191(12), 2097–2105 (2005).
  • Miyagawa A, Watanabe M, Igai K et al. Development of dialyzer with immobilized glycoconjugate polymers for removal of Shiga-toxin. Biomaterials27(17), 3304–3311 (2006).
  • Armstrong GD, Fodor E, Vanmaele R. Investigation of Shiga-like toxin binding to chemically synthesized oligosaccharide sequences. J. Infect. Dis.164(6), 1160–1167 (1991).
  • Rogers JE, Armstrong G, O’Brien AD. Therapeutic value of Stx-specific antibodies or synsorb in streptomycin (STR)-treated mice orally infected with Shiga toxin-producing Escherichia coli (STEC). In:Program and Abstracts of the 3rd International Symposium and Workshop on Shiga Toxin (Verotoxin)-Producing Escherichia coli Infections (Baltimore). Lois Joy Galler Foundation for Hemolytic Uremic Syndrome, NY, USA 114 (1997) (Abstract V149/VII).
  • Trachtman H, Cnaan A, Christen E et al. Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA290(10), 1337–1344 (2003).
  • Armstrong GD, Mulvey GL, Marcato P et al. Human serum amyloid P component protects against Escherichia coli O157:H7 Shiga toxin 2 in vivo: therapeutic implications for hemolytic–uremic syndrome. J. Infect. Dis.193(8), 1120–1124 (2006).
  • Yamagami S, Motoki M, Kimura T et al. Efficacy of postinfection treatment with anti-Shiga toxin (Stx) 2 humanized monoclonal antibody TMA-15 in mice lethally challenged with Stx-producing Escherichia coli. J. Infect. Dis.184(6), 738–742 (2001).
  • Mukherjee J, Chios K, Fishwild D et al. Human stx2-specific monoclonal antibodies prevent systemic complications of Escherichia coli O157:H7 infection. Infect. Immun.70(2), 612–619 (2002).
  • Mukherjee J, Chios K, Fishwild D et al. Production and characterization of protective human antibodies against Shiga toxin 1. Infect. Immun.70(10), 5896–5899 (2002).
  • Smith MJ, Carvalho HM, Melton-Celsa AR, O’Brien AD. The 13C4 monoclonal antibody that neutralizes Shiga toxin type 1 (stx1) recognizes three regions on the stx1 B subunit and prevents stx1 from binding to its eukaryotic receptor globotriaosylceramide. Infect. Immun.74(12), 6992–6998 (2006).
  • Tzipori S, Sheoran A, Akiyoshi D, Donohue-Rolfe A, Trachtman H. Antibody therapy in the management of Shiga toxin-induced hemolytic uremic syndrome. Clin. Microbiol. Rev.17(4), 926–941 (2004).
  • Tzipori S, Karch H, Wachsmuth KI et al. Role of a 60-megadalton plasmid and Shiga-like toxins in the pathogenesis of infection caused by enterohemorrhagic Escherichia coli O157:H7 in gnotobiotic piglets. Infect. Immun.55(12), 3117–3125 (1987).
  • Donohue-Rolfe A, Kondova I, Mukherjee J, Chios K, Hutto D, Tzipori S. Antibody-based protection of gnotobiotic piglets infected with Escherichia coli O157:H7 against systemic complications associated with Shiga toxin 2. Infect. Immun.67(7), 3645–3648 (1999).
  • Lindgren SW, Melton AR, O’Brien AD. Virulence of enterohemorrhagic Escherichia coli O91:H21 clinical isolates in an orally infected mouse model. Infect. Immun.61(9), 3832–3842 (1993).
  • Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T, Frankel G. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut47(3), 377–381 (2000).
  • Tzipori S, Gibson R, Montanaro J. Nature and distribution of mucosal lesions associated with enteropathogenic and enterohemorrhagic Escherichia coli in piglets and the role of plasmid-mediated factors. Infect. Immun.57(4), 1142–1150 (1989).
  • Garcia A, Bosques CJ, Wishnok JS et al. Renal injury is a consistent finding in Dutch Belted rabbits experimentally infected with enterohemorrhagic Escherichia coli. J. Infect. Dis.193(8), 1125–1134 (2006).
  • Dowling TC, Chavaillaz PA, Young DG et al. Phase 1 safety and pharmacokinetic study of chimeric murine–human monoclonal antibody cαstx2 administered intravenously to healthy adult volunteers. Antimicrob. Agents Chemother.49(5), 1808–1812 (2005).
  • Smith MJ, Teel LD, Carvalho HM, Melton-Celsa AR, O’Brien AD. Development of a hybrid Shiga holotoxoid vaccine to elicit heterologous protection against Shiga toxins types 1 and 2. Vaccine24(19), 4122–4129 (2006).
  • Wen SX, Teel LD, Judge NA, O’Brien AD. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proc. Natl Acad. Sci. USA103(18), 7082–7087 (2006).
  • Marcato P, Griener TP, Mulvey GL, Armstrong GD. Recombinant Shiga toxin B-subunit-keyhole limpet hemocyanin conjugate vaccine protects mice from Shigatoxemia. Infect. Immun.73(10), 6523–6529 (2005).
  • Orth D, Grif K, Würzner R. National Reference Laboratory for EHEC annual report 2005. Mitt. San.107 (10), 3–6 (2006).
  • Noguera-Obenza M, Ochoa TJ, Gomez HF et al. Human milk secretory antibodies against attaching and effacing Escherichia coli antigens. Emerg. Infect. Dis.9(5), 545–551 (2003).
  • Orth D, Grif K, Dierich MP, Würzner R. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: indications for an animal reservoir. Epidemiol. Infect.134(4), 719–723 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.