63
Views
8
CrossRef citations to date
0
Altmetric
Review

Role of bioinformatics in the development of new antibacterial therapy

Pages 51-65 | Published online: 10 Jan 2014

References

  • Martinez J, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev.15(4), 647–679 (2002).
  • Therrien C, Levesque RC. Molecular basis of antibiotic resistance and β-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiol. Rev.24, 251–262 (2000).
  • Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science264(5157), 375–382 (1994).
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev.61(2), 136–169 (1997).
  • Armstrong D. History of opportunistic infection in the immunocompromised host. Clin. Inf. Dis.17 (Suppl. 2) S318–S321 (1993).
  • Casadevall A, Pirofski LA. Host–pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect. Immun.68(12), 6511–6518 (2000).
  • Swartz MN. Hospital-acquired infections: diseases with increasingly limited therapies. Proc. Natl Acad. Sci. USA91, 2420–2427 (1994).
  • Kupperwasser LI, Skurray RA, Brown MH et al. Plasmid mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of qacA locus. Antimicrob. Agents Chemother.43(10), 2395–2399 (1999).
  • Mounier JA, Ryter M, Ciquis-Rondon M, Sansonetti PJ. Intracellular and cell-to-cell spread of Listeria monocytogens involve interaction with F-actin enterocytelike cell line Caco-2. Infect. Immun.58, 1048–1058 (1990).
  • Ochman H, Mora NA. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science292, 1096–1098 (2001).
  • Chopra I, Hodgson J, Metcalf B, Poste G. The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob. Agents Chemother.41, 497–503 (1997).
  • Leclerc JE, Li B, Payne WL, Cédula TA. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science274, 1208–1211 (1996).
  • Tenover FC, Hughes JM. The challenges of emerging infectious diseases: development and spread of multiple-resistant bacterial pathogens. Science275, 300 (1996).
  • Barocchi MA, Censini S, Rappuoli R. Vaccines in the era of genomics: the pneumococcal challenge. Vaccine25, 2963–2973 (2007).
  • DeGroot AS, Bosma A, Chinai N et al. From genome to vaccine: in silico predictions, ex vivo verification. Vaccine19(31), 4385–4395 (2001).
  • Gerdes SY, Scholle MD, D’Souza M, Bernal A et al. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J. Bacteriol.184(16), 4555–4572 (2002).
  • Girard MP, Prezioski M, Aguado M et al. A review of vaccine research and development: meningococcal disease. Vaccine24, 4692–4700 (2006).
  • Liu J, Dehbi M, Moeck G et al. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol.22(2), 185–191 (2004).
  • Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins47(4), 409–43 (2002).
  • Baker D, Sali A. Protein structure prediction and structural genomics. Science294, 93–96 (2001).
  • Franklin TJ, Snow GA. Biochemistry and Molecular Biology of Antimicrobial Drug Action (5th Edition). Kluwer Academic, USA (1998).
  • Cotter PA, Miller JF. Triggering bacterial virulence. Science273, 1183–1184 (1996).
  • Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H. Pathogenicity islands of virulent bacteria: structure, function, and impact on microbial evolution. Mol. Microbiol.23, 1089–1097(1997).
  • Wang W, Kollman PA. Computational study of protein specificity, the molecular basis of HIV-1 protease drug resistance. Proc. Natl Acad. Sci. USA98, 14937–14942 (2001).
  • Zhou J, Thompson DK, Xu, Y, Tiedje JM. Microbial Functional Genomics. Wiley, NJ, USA (2004).
  • Hagman KE, Shafer WE. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J. Bacteriol.177(14), 4162–4165 (1995).
  • Nikaido H. Multidrug efflux pumps of Gram negative bacteria. J. Bacteriol.178(20), 5853–5859 (1996).
  • Salyers AA et al. Conjugative transposons: an unusual and diverse set of gene transfer elements. Microbiol. Rev.59, 579 (1995).
  • Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature406, 775–781 (2000).
  • Wilson JM, Schurr MJ, Leblanc CL et al. Mechanisms of bacterial pathogenicity. Post Grad. Med. J.78, 216–224 (2002).
  • Maurelli AT, Fernandez RE, Bloch CA et al. Black holes and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA95, 3943–3948 (1998).
  • Watanbe H, Nakamura A. Large plasmids associated with virulence in Shigella species have a common function necessary for epithelial cell penetration. Infect. Immun.48(1), 260–262 (1985).
  • Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol.175(22), 7363–7372 (1993).
  • Tenaillon O, Taddei F, Radman M, Matic I. Second order selection in bacterial evolution: selection acting on mutation and recombination rates in the course of adaptation. Res. Microbiol.152, 11–16 (2001).
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science284, 1318–1322 (1999).
  • Jeffrey CJ. Moonlighting proteins: old proteins learning new tricks. Trend Genet.19, 415–417 (2003).
  • Portnoy DA, Wolf-Watz H, Bolin I et al. Characterization of common virulence plasmids in Yersinia species and their role in the expression of outer membrane proteins. Infect. Immun.43(1), 108–114 (1984).
  • Ozeri R, Khazanov N, Perlman N, Shokhen M, Albeck A. Enzyme isoselective inhibitors: a tool for binding trend analysis. ChemMedChem.1, 631–638 (2006).
  • Shokhen M, Khazanov N, Albeck A. Enzyme isoselective inhibitors: application to drug design. ChemMedChem1, 639–643 (2006).
  • Shokhen M, Khazanov N, Albeck A. Enzyme inhibition trend analysis – a new method for drug design. FEBS J.272(Suppl. 1), B1–007 (2006).
  • Gunn JS, Miller SI. PhoP–PhoQ activates transcription of pmrAB encoding a two-component regulatory system involved in Salmonella typhirium antimicrobial peptide resistance. J. Bacteriol.178(23), 6857–6864 (1996).
  • Van Velkinburgh JC, Gunn JS. PhoP–PhoQ regulated loci are required for enhanced bile resistance in Salmonella spp. Infect. Immun.67(4), 1614–1622 (1999).
  • Bansal AK. An automated comparative analysis of seventeen complete microbial genomes. Bioinformatics15(11), 900–908 (1999).
  • Bansal AK. Integrating co-regulated gene-groups and pair-wise genome comparisons to automate reconstruction of microbial pathways. Proceedings of IEEE International Symposium on Bioinformatics and Biomedical Engineering. Washington DC, USA 209–216 (2001).
  • Bono H, Ogata H, Goto S, Kanehisa M. Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Res.8(3), 203–210 (1998).
  • Goto S, Nishioka T, Kanehisa M. LIGAND: chemical database for enzyme reactions. Bioinformatics14(7), 591–599 (1998).
  • Kelley BP, Sharan R, Karp RM et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl Acad. Sci. USA100(20), 11394–11399 (2003).
  • Courvalin P. Transfer of antibiotic resistant genes between Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother.38, 1447 (1994).
  • Ochman H, Lawrence JG, Groisman EA. Lateral gene-transfer and the nature of bacterial innovation. Nature405, 299–304 (2000).
  • Salyers AA, CF Amabile-Cuevas. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother.41, 2321–2325 (1997).
  • Dean PM, Lloyd DG, Todorov NP. De novo drug design: integration of structure-based and ligand-based methods. Curr. Opin. Drug Disc. Dev.7, 347–353 (2006).
  • Benson DA, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res.33, D34–D38 (2000).
  • Berman HM, Westbrook J, Feng Z et al. The Protein Data Bank. Nucleic Acids Res.28(1), 235–242 (2000).
  • Mulder NJ, Apweiler R, Attwood TK et al. Interpro: an integrated documentation resource for protein families, domains and functional sites. Bioinformatics16, 1145–50 (2001).
  • Bateman A, Coin L, Durbin R et al. The Pfam protein families’ database. Nucleic Acids Res.32, D138–D141 (2004).
  • Chen X, Ji ZL, Chen YZ. TTD: Therapeutic target database. Nucleic Acids Res.30(1), 412–415 (2002).
  • Kanehisa M, Goto S, Hattori M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res.34, D354–357 (2006).
  • Ogata H, Goto S, Fujibuchi W, Kanehisa M. Computation with the KEGG pathway database. Biosystems47, 119–128 (1996).
  • Puvanendrampillai D, Mitchell JBO. Protein Ligand Database (PLD): additional understanding of the nature and specificity of protein–ligand complexes. Bioinformatics19(14), 1856–1857 (2003).
  • Salgado H, Gama-Castro S, Martínez-Antonio A et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res.32, 303–306 (2004).
  • Tatusov RL, Natale DA, Garkavtsev IV et al. The COG Database: new developments in phylogenetic classifications from complete genome. Nucleic Acids Res.29(1), 22–28 (2001).
  • McGuire AM, Hughes JD, Church GM. Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes. Genome Res.10(6), 744–757 (2000).
  • Mount DW. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, NY, USA (2000).
  • Waterman MS. Introduction to Computational Biology, Maps, Sequence, and Genomes. Chapman & Hall, London, UK (1995).
  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res.27(23), 4636–4641 (1999).
  • Azad RK, Borodovsky M. Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory. Brief Bioinformatics5(2), 118–130 (2004).
  • Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res.26(4), 1107–1115 (1998).
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic alignment search tools. J. Mol. Biol.215, 403–410 (1990).
  • Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.15(17), 3389–3402 (1997).
  • Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL. A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics17(12), 1123–1130 (2001).
  • Henikoff S, Henikoff JG, Alford WJ, Pietrokovski S. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene163(2), GC17–GC26 (1995).
  • Chenna R, Sugawara1 H, Koike Lopez TR, Gibson TJ, Higgins DJ, Thompson JD. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res.31(13), 3497–3500 (2003).
  • Gomez A, Domedel N, Cedano J, Penol J, Querol E. Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics19, 895 –896 (2003).
  • Catherine B, Emmanuel C, Sébastien C, Yoann B, Sandrine D, Daniel K. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res.33, D212–D215 (2000).
  • Sonnhammer EL, Eddy SR, Birney E, Batman A, Durbin R. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res.26, 320–322 (1998).
  • Finn RD, Mistry J, Schuster-Böckle B et al. Pfam: clans, web tools and services. Nucleic Acids Res.34, D247–D251 (2006).
  • Tatusov RL, Mushegian M, Bork P et al. Metabolism and evolution of Haemophilius influenzae deduced from a whole-genome comparison with Escherichia coli . Curr. Biol.6, 279–291 (1996).
  • Bansal AK, Myer TE. Evolutionary analysis by whole genome comparisons. J. Bacteriol.184(8), 2260–2272 (2002).
  • Robinson WH, Fontoura P, Lee BJ et al. Protein micro arrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol.21(9), 1033–1039 (2003).
  • Zagursky RJ, Olmsted SB, Russell DP, Wooters JL. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Vaccines2(3), 417–436 (2003).
  • Durand D, Sankoff D. Tests for gene clustering. J. Comput. Biol.10(3/4), 453–482 (2003).
  • Bairoch A, Apweiler R, Wu CH, et al. The Universal Protein Resource (UniProt). Nucleic Acids Res.33, D154–D159 (2005).
  • Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson Bø. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol.184(6), 4582–4593 (2002).
  • Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol.17(2), 53–60 (1999).
  • Papin JA, Price ND, Palsson Bø. Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res.12(12), 1889–1900 (2002).
  • Luscombe NM, Laskowski RA, Thornton JM. Amino acid base interactions: a three dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids Res.29(13), 2860–2874 (2001).
  • Guthke R, Ulrich M, Hoffman M et al. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics.21(8), 1626–1634 (2005).
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA micro array. Science270, 467–470. (1995).
  • Stekel DJ, Sarti D, Trevino V. Analysis of host response to bacterial infection using error model based gene expression micro array experiments. Nucelic Acids Res.33(6), 1–13 (2005).
  • Waddell PJ, Kishino H. Cluster inference methods and graphical models evaluated on NCI60 micro array gene expression data. Genome Inform.11, 129–140 (2000).
  • Eskin E, Pevzner PA. Finding composite regulatory patterns in DNA sequences. Bioinformatics18(1), 354–363 (2002).
  • Mironov AA, Koonin EV, Roytberg MA, Gelfand MS. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Res.27, 2981–2989 (1999).
  • Bar-Joseph Z, Gerber GK, Lee TI, et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol.21(11), 1337–1342 (2003).
  • Butte A, Kohan I. Mutual information relevance networks: functional genomics clustering using pair-wise entropy measurements. Pac. Symp. Biocomput.418–429 (2000).
  • Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003.278, 8869–8872 (2003).
  • Mwangi MM, Siggia ED. Genome wide identification of regulatory motifs in Bacillus subtilis BMC. Bioinformatics4(1), 18–20 (2003).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004).
  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Genetics5, 522–532 (2004).
  • Carthew RW. Gene regulation by microRNAs. Curr. Opin. Genet. Dev.16(2), 203–208 (2006).
  • Navarro L, Dunoyer P, Jay F et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science312(5772), 436–439 (2006).
  • del Solar G, Espinosa M. Plasmid copy number control: an ever-growing story. Mol. Microbiol.37, 492–500(2001).
  • Mlynarczyk SK, Panning B. X inactivation: Tsix and Xist as yin and yang. Curr. Biol.10, R899–R903(2000).
  • Rajewsky N, Socci ND. Computational identification of microRNA targets. Dev. Biol.267, 529–535 (2003).
  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell110, 513–520 (2002).
  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34, D140–D144(2006).
  • Szymanski M, Erdmann VA, Barciszewski J. Noncoding regulatory RNA database. Nucleic Acids Res.31, 429–431 (2003).
  • Rost B, Sander C. Prediction of protein secondary structure at better than 70 percent accuracy J. Mol. Biol.232, 584–599 (1995).
  • Whisstock JC, Lesk AM. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys.36(3), 307–340 (2003).
  • DeJonge MI, Brosch R, Brodin P. Tuberculosis: from genome to vaccine. Expert Rev. Vaccines.4(4), 541–551 (2005).
  • Pizza M. Identification of vaccine candidates against Serogroup B meningococcus by whole genome sequencing, Science287, 1816–1820 (2000).
  • Prokhorva TA, Nielsen PN, Petersen J et al. Novel surface polypeptides of Campylobacter jejuni as traveler’s diarrhea vaccine candidates discovered by proteomics. Vaccine24, 6446–6455 (2006).
  • Shaila MS, Nayak R, Prakash SS et al. Comparative in silico analysis of two vaccine candidates for group A streptococcus predicts that they both may have similar profiles. Vaccine25, 3567–3573 (2007).
  • Skjøt RLV, Agger EM, Andersen P. Antigen discovery and tuberculosis vaccine development in the post-genomic era. Scand. J. Infect. Dis.33(9), 643–647 (2001).
  • Giuliani MM, Adu-Bobie J, Comanducci J et al. A universal vaccine for serogroup B. meningococcus. Proc. Natl Acad. Sci. USA103(29), 10834–10839 (2006).
  • Montgomery DL. Tuberculosis vaccine design: influence of the completed genome sequence. Briefing in Bioinformatics1(3), 289–296 (2000).
  • García-del PF, Pucciarelli, MG, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl Acad. Sci. USA96, 11578–11583 (1999).
  • Honma Y, Fernández RE, Maurelli AT. A DNA adenine methylase mutant of Shigella flexneri shows no significant attenuation of virulence. Microbiology150, 1973–1978 (2004).
  • Moir DT, Shaw KJ, Hare RS, Vovis GF. Genomics and antimicrobial drug discovery. Antimicrob. Agents Chemother.43(3), 439–446 (1999).
  • Rosamond J, Allsop A. Harnessing the power of the genome in the search for new antibiotics. Science287, 1973–1976 (2000).
  • Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr. Opin. Struct. Biol.15, 342–348 (2005).
  • Marck C, Grosjean H. tRNAomics: Analysis of tRNA genes from 5-genomes of eukarya, archaea, and bacteria reveals anti-codon-sparing strategies and domain-specific features. RNA8, 1189–1232 (2002).

Websites

  • Todar K. Todar’s Online Book of Bacteriology www.textbookofbacteriology.net
  • Bansal AK. Bioinformatics in microbial biotechnology - a mini review. Microbial Cell Factories. 4(19) www.microbialcellfactories.com/content/pdf/1475–2859–4–19.pdf
  • Genbank: the NIH genome sequence database ftp://ftp.ncbi.nih.gov/genbank/
  • KEGG: Kyoto encyclopedia of genes and genomes www.genome.jp/kegg/
  • EMBL nucleotide sequence database www.ebi.ac.uk/embl/
  • J Craig Institute comprehensive microbial resources http://cmr.tigr.org/tigr-scripts/CMR/CmrHomePage.cgi
  • Protein data bank www.pdb.org
  • MMDB: Entrez’s structure database www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml
  • Macromolecular structure database group www.ebi.ac.uk/msd/
  • Protein structure 2/3D structure prediction and databases http://restools.sdsc.edu/biotools/biotools9.html
  • The ProDom database http://prodom.prabi.fr
  • Pfam database http://pfam.sanger.ac.uk/
  • A conserved domain database www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
  • Therapeutic target database http://xin.cz3.nus.edu.sg/group/cjttd/ttd.asp
  • KEGG pathway database www.genome.ad.jp/kegg/pathway.html
  • Computed ligand binding energy database http://xin.cz3.nus.edu.sg/group/CLiBE/CLiBE.asp
  • KEGG ligand database www.genome.ad.jp/kegg/ligand.html
  • DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information http://dbtbs.hgc.jp/
  • COGS: cluster of orthologs database www.ncbi.nlm.nih.gov/COG/
  • Goldie: genome comparison database www.cs.kent.edu/∼arvind/orthos.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.