72
Views
17
CrossRef citations to date
0
Altmetric
Review

Toll-like receptors: their roles in bacterial recognition and respiratory infections

&
Pages 479-495 | Published online: 10 Jan 2014

References

  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol.21(1), 335–376 (2003).
  • Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell52(2), 269–279 (1988).
  • Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86(6), 973–983 (1996).
  • Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388(6640), 394–397 (1997).
  • Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282(5396), 2085–2088 (1998).
  • Beutler B, Rehli M. Evolution of the TIR, Tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol.270, 1–21 (2002).
  • Imler J-L, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol.11(7), 304–311 (2001).
  • Underhill DM, Ozinsky A, Hajjar AM et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature401(6755), 811–815 (1999).
  • Anderson KV. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol.12(1), 13–19 (2000).
  • Takeda K, Akira S. TLR signaling pathways. Semin. Immunol.16(1), 3–9 (2004).
  • O’Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7(5), 353–364 (2007).
  • Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem.76(1), 141–165 (2007).
  • Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol.6(9), 644–658 (2006).
  • Medzhitov R, Preston-Hurlburt P, Kopp E et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell2(2), 253–258 (1998).
  • Yamamoto M, Sato S, Hemmi H et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science301(5633), 640–643 (2003).
  • Yamamoto M, Sato S, Hemmi H et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol.4(11), 1144–1150 (2003).
  • Hoebe K, Du X, Georgel P et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature424(6950), 743–748 (2003).
  • Hoebe K, Janssen EM, Kim SO et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by TRIF-dependent and TRIF-independent pathways. Nat. Immunol.4(12), 1223–1229 (2003).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol.5(10), 987–995 (2004).
  • Sansonetti PJ. The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol.7(12), 1237–1242 (2006).
  • Kaisho T, Akira S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol.117(5), 979–987 (2006).
  • Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature430(6996), 257–263 (2004).
  • Ting JPY, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol.8(5), 372–379 (2008).
  • Kanneganti T-D, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity27(4), 549–559 (2007).
  • Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature442(7098), 39–44 (2006).
  • Creagh EM, O’Neill LAJ. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol.27(8), 352–357 (2006).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol.2(8), 675–680 (2001).
  • Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol.14(1), 103–110 (2002).
  • Ishii K, Coban C, Akira S. Manifold mechanisms of Toll-like receptor–ligand recognition. J. Clin. Immunol.25(6), 511–521 (2005).
  • Bell JK, Botos I, Hall PR et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl Acad. Sci. USA102(31), 10976–10980 (2005).
  • Choe J, Kelker MS, Wilson IA. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science309(5734), 581–585 (2005).
  • Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA97(25), 13766–13771 (2000).
  • Underhill DM. Toll-like receptors: networking for success. Eur. J. Immunol.33(7), 1767–1775 (2003).
  • Fitzgerald KA, Rowe DC, Golenbock DT. Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect.6(15), 1361–1367 (2004).
  • Kimoto M, Nagasawa K, Miyake K. Role of TLR4/MD-2 and RP105/MD-1 in innate recognition of lipopolysaccharide. Scand. J. Infect. Dis.35(9), 568–572 (2003).
  • Kim HM, Park BS, Kim J-I et al. Crystal structure of the TLR4–MD-2 complex with bound endotoxin antagonist eritoran. Cell130(5), 906–917 (2007).
  • Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science316(5831), 1632–1634 (2007).
  • Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors. J. Endotoxin Res.8(6), 459–463 (2002).
  • Jin MS, Kim SE, Heo JY et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell130(6), 1071–1082 (2007).
  • Qureshi ST, Lariviere L, Leveque G et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med.189(4), 615–625 (1999).
  • Hoshino K, Takeuchi O, Kawai T et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol.162(7), 3749–3752 (1999).
  • Beutler B. TLR4 as the mammalian endotoxin sensor. Curr. Top. Microbiol. Immunol.270, 109–120 (2002).
  • Vasselon T, Detmers PA, Charron D, Haziot A. TLR2 recognizes a bacterial lipopeptide through direct binding. J. Immunol.173(12), 7401–7405 (2004).
  • Brightbill HD, Libraty DH, Krutzik SR et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science285(5428), 732–736 (1999).
  • Faure E, Equils O, Sieling PA et al. Bacterial lipopolysaccharide activates NF-κB through Toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of Tlr-4 and Tlr-2 in endothelial cells. J. Biol. Chem.275(15), 11058–11063 (2000).
  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem.274(25), 17406–17409 (1999).
  • Tapping RI, Tobias PS. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J. Endotoxin Res.9(4), 264–268 (2003).
  • Buwitt-Beckmann U, Heine H, Wiesmuller KH et al. Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur. J. Immunol.35(1), 282–289 (2005).
  • Buwitt-Beckmann U, Heine H, Wiesmuller KH et al. TLR1- and TLR6-independent recognition of bacterial lipoeptides. J. Biol. Chem.281, 9049–9057 (2006).
  • Morr M, Takeuchi O, Akira S, Simon MM, Mühlradt PF. Differential recognition of structural details of bacterial lipopeptides by Toll-like receptors. Eur. J. Immunol.32(12), 3337–3347 (2002).
  • Okusawa T, Fujita M, Nakamura J et al. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by Toll-like receptors 2 and 6. Infect. Immun.72(3), 1657–1665 (2004).
  • Takeuchi O, Kawai T, Muhlradt PF et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol.13(7), 933–940 (2001).
  • Takeuchi O, Sato S, Horiuchi T et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol.169(1), 10–14 (2002).
  • Hajjar AM, O’Mahony DS, Ozinsky A et al. Cutting edge: functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol.166(1), 15–19 (2001).
  • Johnson CM, Lyle EA, Omueti KO et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol.178(12), 7520–7524 (2007).
  • Travassos LH, Girardin SE, Philpott DJ et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep.5(10), 1000–1006 (2004).
  • Dziarski R, Gupta D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect. Immun.73(8), 5212–5216 (2005).
  • Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410(6832), 1099–1103 (2001).
  • Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature408(6813), 740–745 (2000).
  • Bauer S, Kirschning CJ, Hacker H et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA98(16), 9237–9242 (2001).
  • Kollisch G, Kalali BN, Voelcker V et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology114(4), 531–541 (2005).
  • Pivarcsi A, Bodai L, Rethi B et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int. Immunol.15(6), 721–730 (2003).
  • Miller LS, Modlin RL. Human keratinocyte Toll-like receptors promote distinct immune responses. J. Invest. Dermatol.127(2), 262–263 (2007).
  • Lebre MC, van der Aar AMG, van Baarsen L et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J. Invest. Dermatol.127(2), 331–341 (2006).
  • Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J. Immunol.174(8), 4453–4460 (2005).
  • Chabot S, Wagner JS, Farrant S, Neutra MR. TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J. Immunol.176(7), 4275–4283 (2006).
  • Uno K, Kato K, Atsumi T et al. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol.293(5), G1004–G1012 (2007).
  • Chen J, Rao JN, Zou T et al. Polyamines are required for expression of Toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol.293(3), G568–G576 (2007).
  • Fazeli A, Bruce C, Anumba DO. Characterization of Toll-like receptors in the female reproductive tract in humans. Hum. Reprod.20(5), 1372–1378 (2005).
  • Palladino MA, Johnson TA, Gupta R, Chapman JL, Ojha P. Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol. Reprod.76(6), 958–964 (2007).
  • Diamond G, Legarda D, Ryan LK. The innate immune response of the respiratory epithelium. Immunol. Rev.173(1), 27–38 (2000).
  • Harju K, Glumoff V, Hallman M. Ontogeny of Toll-like receptors TLR2 and TLR4 in mice. Pediatr. Res.49(1), 81–83 (2001).
  • Armstrong L, Medford ARL, Uppington KM et al. Expression of functional Toll-like receptor-2 and -4 on alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol.31(2), 241–245 (2004).
  • Hertz CJ, Wu Q, Porter EM et al. Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human β defensin-2. J. Immunol.171(12), 6820–6826 (2003).
  • Guillot L, Le Goffic R, Bloch S et al. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem.280(7), 5571–5580 (2005).
  • Zhang Z, Louboutin J-P, Weiner DJ, Goldberg JB, Wilson JM. Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect. Immun.73(11), 7151–7160 (2005).
  • Platz J, Beisswenger C, Dalpke A et al. Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J. Immunol.173(2), 1219–1223 (2004).
  • Chaudhuri N, Dower SK, Whyte MKB, Sabroe I. Toll-like receptors and chronic lung disease. Clin. Sci.109(2), 125–133 (2005).
  • Soong G, Reddy B, Sokol S, Adamo R, Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest.113(10), 1482–1489 (2004).
  • Phipps S, Lam CE, Foster PS, Matthaei KI. The contribution of Toll-like receptors to the pathogenesis of asthma. Immunol. Cell Biol.85(6), 463–470 (2007).
  • Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol.1(5), 398–401 (2000).
  • Jones BW, Heldwein KA, Means TK, Saukkonen JJ, Fenton MJ. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann. Rheum. Dis.60(90003), iii6–iii12 (2001).
  • Droemann D, Goldmann T, Tiedje T et al. Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir. Res.6(1), 68 (2005).
  • Oshikawa K, Sugiyama Y. Gene expression of Toll-like receptors and associated molecules induced by inflammatory stimuli in the primary alveolar macrophage. Biochem. Biophys. Res. Commun.305(3), 649–655 (2003).
  • Suzuki K, Suda T, Naito T et al. Impaired Toll-like receptor 9 expression in alveolar macrophages with no sensitivity to CpG DNA. Am. J. Respir. Crit. Care Med.171(7), 707–713 (2005).
  • Hawn TR, Berrington WR, Smith IA et al. Altered inflammatory responses in TLR5-deficient mice infected with Legionella pneumophila. J. Immunol.179(10), 6981–6987 (2007).
  • Didierlaurent A, Goulding J, Patel S et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J. Exp. Med.205(2), 323–329 (2008).
  • Means TK, Hayashi F, Smith KD, Aderem A, Luster AD. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol.170(10), 5165–5175 (2003).
  • Hawn TR, Verbon A, Lettinga KD et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J. Exp. Med.198(10), 1563–1572 (2003).
  • Yu Y, Nagai S, Wu H et al. TLR5-mediated phosphoinositide 3-kinase activation negatively regulates flagellin-induced proinflammatory gene expression. J. Immunol.176(10), 6194–6201 (2006).
  • Michel O, Duchateau J, Sergysels R. Effect of inhaled endotoxin on bronchial reactivity in asthmatic and normal subjects. J. Appl. Physiol.66(3), 1059–1064 (1989).
  • Kitz R, Rose MA, Borgmann A, Schubert R, Zielen S. Systemic and bronchial inflammation following LPS inhalation in asthmatic and healthy subjects. J. Endotoxin Res.12(6), 367–374 (2006).
  • Michel O, Nagy A-M, Schroeven M et al. Dose–response relationship to inhaled endotoxin in normal subjects. Am. J. Respir. Crit. Care Med.156(4), 1157–1164 (1997).
  • Schwartz DA, Thorne PS, Jagielo PJ et al. Endotoxin responsiveness and grain dust-induced inflammation in the lower respiratory tract. Am. J. Physiol. Lung Cell. Mol. Physiol.267(5), L609–L617 (1994).
  • Lefort J, Singer M, Leduc D et al. Systemic administration of endotoxin induces bronchopulmonary hyperreactivity dissociated from TNF-α formation and neutrophil sequestration into the murine lungs. J. Immunol.161(1), 474–480 (1998).
  • Alexis NE, Lay JC, Almond M et al. Acute LPS inhalation in healthy volunteers induces dendritic cell maturation in vivo. J. Allergy Clin. Immunol.115(2), 345–350 (2005).
  • Schwartz DA, Wohlford-Lenane CL, Quinn TJ, Krieg AM. Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an IL-12-dependent pathway. J. Immunol.163(1), 224–231 (1999).
  • Maris NA, Dessing MC, de Vos AF et al. Toll-like receptor mRNA levels in alveolar macrophages after inhalation of endotoxin. Eur. Respir. J.28(3), 622–626 (2006).
  • Eisenbarth SC, Piggott DA, Huleatt JW et al. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med.196(12), 1645–1651 (2002).
  • Jeon SG, Oh S-Y, Park H-K et al. Th2 and Th1 lung inflammation induced by airway allergen sensitization with low and high doses of double-stranded RNA. J. Allergy Clin. Immunol.120(4), 803–812 (2007).
  • Leemans JC, Vervoordeldonk MJBM, Florquin S, van Kessel KP, van der Poll T. Differential role of interleukin-6 in lung inflammation induced by lipoteichoic acid and peptidoglycan from Staphylococcus aureus. Am. J. Respir. Crit. Care Med.165(10), 1445–1450 (2002).
  • Leemans JC, Heikens M, van Kessel KPM, Florquin S, van der Poll T. Lipoteichoic acid and peptidoglycan from Staphylococcus aureus synergistically induce neutrophil influx into the lungs of mice. Clin. Diagn. Lab. Immunol.10(5), 950–953 (2003).
  • Adamo R, Sokol S, Soong G, Gomez MI, Prince A. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialo GM1 and Toll-Like receptor 2 as well as Toll-like receptor 5. Am. J. Respir. Cell Mol. Biol.30(5), 627–634 (2004).
  • Honko AN, Mizel SB. Mucosal administration of flagellin induces innate immunity in the mouse lung. Infect. Immun.72(11), 6676–6679 (2004).
  • Feuillet V, Medjane S, Mondor I et al. Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc. Natl Acad. Sci. USA103(33), 12487–12492 (2006).
  • Pons J, Sauleda J, Regueiro V et al. Expression of Toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease. Respir. Res.7(1), 64 (2006).
  • WHO. The world health report 1999: making a difference. World Health Organization, Geneva, Switzerland (1999).
  • Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle72(1), 1–6 (1991).
  • WHO. Global tuberculosis control: surveillance, planning, financing. World Health Organization, Geneva, Switzerland (2006).
  • Dye C, Scheele S, Dolin P et al. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. JAMA282(7), 677–686 (1999).
  • Schlesinger L. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol.150(7), 2920–2930 (1993).
  • Stokes RW, Haidl ID, Jefferies WA, Speert DP. Macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J. Immunol.151(12), 7067–7076 (1993).
  • Swartz RP, Naai D, Vogel CW, Yeager H Jr. Differences in uptake of mycobacteria by human monocytes: a role for complement. Infect. Immun.56(9), 2223–2227 (1988).
  • Zaffran Y, Zhang L, Ellner JJ. Role of CR4 in Mycobacterium tuberculosis–human macrophages binding and signal transduction in the absence of serum. Infect. Immun.66(9), 4541–4544 (1998).
  • Armstrong J, Hart P. Phagosome–lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med.142, 1–16 (1975).
  • Kang BK, Schlesinger LS. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect. Immun.66(6), 2769–2777 (1998).
  • Kang PB, Azad AK, Torrelles JB et al. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med.202(7), 987–999 (2005).
  • Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun.66(4), 1277–1281 (1998).
  • Ferguson JS, Schlesinger LS. Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber. Lung Dis.80(4–5), 173–184 (2000).
  • Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol.163(1), 312–321 (1999).
  • Ferguson JS, Voelker DR, Ufnar JA, Dawson AJ, Schlesinger LS. Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J. Immunol.168(3), 1309–1314 (2002).
  • Gaynor C, McCormack F, Voelker D, McGowan S, Schlesinger L. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J. Immunol.155(11), 5343–5351 (1995).
  • Koppel EA, van Gisbergen KPJM, Geijtenbeek TBH, van Kooyk Y. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell. Microbiol.7(2), 157–165 (2005).
  • Tailleux L, Maeda N, Nigou J, Gicquel B, Neyrolles O. How is the phagocyte lectin keyboard played? Master class lesson by Mycobacterium tuberculosis. Trends Microbiol.11(6), 259–263 (2003).
  • Peterson P, Gekker G, Hu S et al. CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect. Immun.63(4), 1598–1602 (1995).
  • Fratazzi C, Manjunath N, Arbeit RD et al. A macrophage invasion mechanism for mycobacteria implicating the extracellular domain of CD43. J. Exp. Med.192(2), 183–192 (2000).
  • Randhawa AK, Ziltener HJ, Merzaban JS, Stokes RW. CD43 is required for optimal growth inhibition of Mycobacterium tuberculosis in macrophages and in mice. J. Immunol.175(3), 1805–1812 (2005).
  • Leemans JC, Florquin S, Heikens M et al. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J. Clin. Invest.111(5), 681–689 (2003).
  • Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol.6, 33–43 (2006).
  • Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood108(9), 3168–3175 (2006).
  • Krutzik SR, Modlin RL. The role of Toll-like receptors in combating mycobacteria. Semin. Immunol.16(1), 35–41 (2004).
  • Ryffel B, Fremond C, Jacobs M et al. Innate immunity to mycobacterial infection in mice: critical role for Toll-like receptors. Tuberculosis85(5–6), 395–405 (2005).
  • van Crevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev.15(2), 294–309 (2002).
  • Quesniaux V, Fremond C, Jacobs M et al. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect.6(10), 946–959 (2004).
  • Heldwein KA, Fenton MJ. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect.4(9), 937–944 (2002).
  • Means TK, Wang S, Lien E et al. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol.163(7), 3920–3927 (1999).
  • Takeuchi O, Sato S, Horiuchi T et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol.169(1), 10–14 (2002).
  • Bulut Y, Faure E, Thomas L, Equils O, Arditi M. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol.167(2), 987–994 (2001).
  • Bafica A, Scanga CA, Feng CG et al. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med.202(12), 1715–1724 (2005).
  • Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl Acad. Sci. USA96(25), 14459–14463 (1999).
  • Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol.177(1), 422–429 (2006).
  • MacMicking JD, North RJ, LaCourse R et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA94(10), 5243–5248 (1997).
  • Scanga CA, Bafica A, Feng CG et al. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun.72(4), 2400–2404 (2004).
  • Fremond CM, Yeremeev V, Nicolle DM et al. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest.114(12), 1790–1799 (2004).
  • Cooper AM, Dalton DK, Stewart TA et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med.178(6), 2243–2247 (1993).
  • Flynn JL, Chan J, Triebold KJ et al. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med.178, 2249–2254 (1993).
  • Sugawara I, Yamada H, Li C et al. Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol.47(5), 327–336 (2003).
  • Reiling N, Hölscher C, Fehrenbach A et al. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol.169, 3480–3484 (2002).
  • Drennan MB, Nicolle DMM, Quesniaux VFJ et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am. J. Pathol.164(1), 49–57 (2004).
  • Abel B, Thieblemont N, Quesniaux VFJ et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol.169, 3155 (2002).
  • Branger J, Leemans JC, Florquin S et al. Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol.16(3), 509–516 (2004).
  • Kamath AB, Alt J, Debbabi H, Behar SM. Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun.71(7), 4112–4118 (2003).
  • Shinozawa Y, Matsumoto T, Uchida KOU et al. Role of interferon-γ in inflammatory responses in murine respiratory infection with Legionella pneumophila. J. Med. Microbiol.51(3), 225–230 (2002).
  • Brieland JK, Remick DG, Freeman PT et al.In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor α and nitric oxide. Infect. Immun.63(9), 3253–3258 (1995).
  • Skerrett SJ, Bagby GJ, Schmidt RA, Nelson S. Antibody mediated depletion of tumor necrosis factor-α impairs pulmonary host defenses to Legionella pneumophila. J. Infect. Dis.176(4), 1019–1028 (1997).
  • Brieland JK, Remick DG, LeGendre ML, Engleberg NC, Fantone JC. In vivo regulation of replicative Legionella pneumophila lung infection by endogenous interleukin-12. Infect. Immun.66(1), 65–69 (1998).
  • Skerrett SJ, Martin TR. Roles for tumor necrosis factor α and nitric oxide in resistance of rat alveolar macrophages to Legionella pneumophila. Infect. Immun.64(8), 3236–3243 (1996).
  • Girard R, Pedron T, Uematsu S et al. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J. Cell. Sci.116(2), 293–302 (2003).
  • Swanson MS, Hammer BK. Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol.54(1), 567–613 (2000).
  • Akamine M, Higa F, Arakaki N et al. Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect. Immun.73(1), 352–361 (2005).
  • Kikuchi T, Kobayashi T, Gomi K et al. Dendritic cells pulsed with live and dead Legionella pneumophila elicit distinct immune responses. J. Immunol.172(3), 1727–1734 (2004).
  • Newton CA, Perkins I, Widen RH, Friedman H, Klein TW. Role of Toll-like receptor 9 in Legionella pneumophila-induced interleukin-12 p40 production in bone marrow-derived dendritic cells and macrophages from permissive and nonpermissive mice. Infect. Immun.75(1), 146–151 (2007).
  • Archer KA, Roy CR. MyD88-dependent responses involving Toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect. Immun.74(6), 3325–3333 (2006).
  • Hawn TR, Smith KD, Aderem A, Skerrett SJ. Myeloid differentiation primary response gene (88)- and Toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J. Infect. Dis.193(12), 1693–1702 (2006).
  • Sporri R, Joller N, Albers U, Hilbi H, Oxenius A. MyD88-dependent IFN-γ production by NK cells is key for control of Legionella pneumophila infection. J. Immunol.176(10), 6162–6171 (2006).
  • Fuse ET, Tateda K, Kikuchi Y et al. Role of Toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model. J. Med. Microbiol.56(3), 305–312 (2007).
  • Lettinga K, Florquin S, Speelman P et al. Toll-like receptor 4 is not involved in host defense against pulmonary Legionella pneumophila infection in a mouse model. J. Infect. Dis.186(4), 570–573 (2002).
  • Hawn TR, Verbon A, Janer M et al. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc. Natl Acad. Sci. USA102(7), 2487–2489 (2005).
  • Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol.3(4), 354–359 (2002).
  • Skerrett SJ, Liggitt HD, Hajjar AM et al. Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am. J. Physiol. Lung Cell. Mol. Physiol.287(1), L143–L152 (2004).
  • Aliprantis AO, Yang R-B, Mark MR et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science285(5428), 736–739 (1999).
  • Firoved AM, Ornatowski W, Deretic V. Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa: implications for inflammation in cystic fibrosis. Infect. Immun.72(9), 5012–5018 (2004).
  • Flo TH, Ryan L, Latz E et al. Involvement of Toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J. Biol. Chem.277(38), 35489–35495 (2002).
  • Epelman S, Stack D, Bell C et al. Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J. Immunol.173(3), 2031–2040 (2004).
  • Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J. Immunol.172(6), 3377–3381 (2004).
  • Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell. Mol. Physiol.292(1), L312–L322 (2007).
  • Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity11(4), 443–451 (1999).
  • Bubeck Wardenburg J, Williams WA, Missiakas D. Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc. Natl Acad. Sci. USA103(37), 13831–13836 (2006).
  • Hashimoto M, Tawaratsumida K, Kariya H et al. Lipoprotein is a predominant Toll-like receptor 2 ligand in Staphylococcus aureus cell wall components. Int. Immunol.18(2), 355–362 (2006).
  • Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol.165(10), 5392–5396 (2000).
  • Yoshimura A, Lien E, Ingalls RR et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol.163(1), 1–5 (1999).
  • Fournier B, Philpott DJ. Recognition of Staphylococcus aureus by the innate immune system. Clin. Microbiol. Rev.18(3), 521–540 (2005).
  • Kim M, Goldstein E, Lewis JP, Libbert W, Warshauer D. Murine pulmonary alveolar macrophages: rates of bacterial ingestion, inactivation, and destruction. J. Infect. Dis.133(3), 310–320 (1976).
  • Rehm SR, Gross GN, Pierce AK. Early bacterial clearance from murine lungs: species-dependent phagocyte response. J. Clin. Invest.66(2), 194–199 (1980).
  • Gonzalez-Zorn B, Senna JPM, Fiette L et al. Bacterial and host factors implicated in nasal carriage of methicillin-resistant Staphylococcus aureus in mice. Infect. Immun.73(3), 1847–1851 (2005).
  • Campbell GD Jr. Commentary on the 1993 American Thoracic Society guidelines for the treatment of community-acquired pneumonia. Chest115(90001), 14S–18S (1999).
  • BernsteinJM. Treatment of community-acquired pneumonia. IDSA guidelines. Chest115(90001), 9S–13S (1999).
  • Musher DM, Alexandraki I, Graviss EA et al. Bacteremic and nonbacteremic pneumococcal pneumonia: a prospective study. Medicine79(4), 210–221 (2000).
  • Echchannaoui H, Frei K, Schnell C et al. Toll-like receptor-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J. Infect. Dis.186(6), 798–806 (2002).
  • Koedel U, Angele B, Rupprecht T et al. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J. Immunol.170(1), 438–444 (2003).
  • Malley R, Henneke P, Morse SC et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl Acad. Sci. USA100(4), 1966–1971 (2003).
  • Mogensen TH, Paludan SR, Kilian M, Ostergaard L. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J. Leukoc. Biol.80(2), 267–277 (2006).
  • Branger J, Knapp S, Weijer S et al. Role of Toll-like receptor 4 in Gram-positive and Gram-negative pneumonia in mice. Infect. Immun.72(2), 788–794 (2004).
  • Knapp S, Wieland CW, Van C et al. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J. Immunol.172(5), 3132–3138 (2004).
  • Mann P, Kennett M, Harvill E. Toll-like receptor 4 is critical to innate host defense in a murine model of bordetellosis. J. Infect. Dis.189(5), 833–836 (2004).
  • Wang X, Moser C, Louboutin J-P et al. Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J. Immunol.168(2), 810–815 (2002).
  • Lee JS, Frevert CW, Matute-Bello G et al. TLR-4 pathway mediates the inflammatory response but not bacterial elimination in E. coli pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol.289(5), L731–L738 (2005).
  • Jeyaseelan S, Manzer R, Young SK et al. Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable Escherichia coli. J. Immunol.175(11), 7484–7495 (2005).
  • Jeyaseelan S, Young SK, Fessler MB et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-mediated signaling contributes to innate immune responses in the lung during Escherichia coli pneumonia. J. Immunol.178(5), 3153–3160 (2007).
  • Berrington WR, Hawn TR. Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter? Immunol. Rev.219(1), 167–186 (2007).
  • Orange JS, Geha RS. Finding NEMO: genetic disorders of NF-κB activation. J. Clin. Invest.112(7), 983–985 (2003).
  • Puel A, Picard C, Ku CL, Smahi A, Casanova JL. Inherited disorders of NF-κB-mediated immunity in man. Curr. Opin. Immunol.16(1), 34–41 (2004).
  • Geha RS, Notarangelo LD, Casanova J-L et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J. Allergy Clin. Immunol.120(4), 776–794 (2007).
  • Hill AVS. Aspects of genetic susceptibility to human infectious diseases. Annu. Rev. Genet.40(1), 469–486 (2006).
  • Frodsham AJ, Hill AVS. Genetics of infectious diseases. Hum. Mol. Genet.13(Suppl. 2), R187–R194 (2004).
  • Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet.58(4), 250–264 (2000).
  • Misch EA, Hawn TR. Toll-like receptor polymorphisms and susceptibility to human disease. Clin. Sci.114(5), 347–360 (2008).
  • Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA. A novel polymorphism in the Toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun.68(11), 6398–6401 (2000).
  • Barber RC, Chang LY, Arnoldo BD et al. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin. Med. Res.4(4), 250–255 (2006).
  • Child NJ, Yang IA, Pulletz MC et al. Polymorphisms in Toll-like receptor 4 and the systemic inflammatory response syndrome. Biochem. Soc. Trans.31(Pt 3), 652–653 (2003).
  • Feterowski C, Emmanuilidis K, Miethke T et al. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology109(3), 426–431 (2003).
  • Schroder NWJ, Diterich I, Zinke A et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage lyme disease. J. Immunol.175(4), 2534–2540 (2005).
  • Ogus AC, Yoldas B, Ozdemir T et al. The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur. Respir. J.23(2), 219–223 (2004).
  • Yim J-J, Ding L, Schaffer AA et al. A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol. Med. Microbiol.40(2), 163–169 (2004).
  • Yim JJ, Lee HW, Lee HS et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun.7(2), 150–155 (2006).
  • Kang T-J, Chae G-T. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol.31(1), 53–58 (2001).
  • Ben-Ali M, Barbouche M-R, Bousnina S, Chabbou A, Dellagi K. Toll-Like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin. Diagn. Lab. Immunol.11(3), 625–626 (2004).
  • Malhotra D, Relhan V, Reddy BSN, Bamezai R. TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum. Genet.116(5), 413–415 (2005).
  • Hawn TR, Misch EA, Dunstan SJ et al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J. Immunol.37(8), 2280–2289 (2007).
  • Misch E, MacDonald M, Ranjit C et al. Human TLR 1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl. Trop. Dis.2(5), e231 (2008).
  • Ma X, Liu Y, Gowen BB et al. Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS ONE2(12), e1318 (2007).
  • Boshuizen HC, Neppelenbroek SE, van Vliet H et al. Subclinical Legionella infection in workers near the source of a large outbreak of Legionnaires disease. J. Infect. Dis.184(4), 515–518 (2001).
  • Den Boer JW, Yzerman EP, Schellekens J et al. A large outbreak of Legionnaires’ disease at a flower show, The Netherlands, 1999. Emerg. Infect. Dis.8(1), 37–43. (2002).
  • Lettinga KD, Verbon A, Weverling GJ et al. Legionnaires’ disease at a Dutch flower show: prognostic factors and impact of therapy. Emerg. Infect. Dis.8(12), 1448–1454. (2002).
  • Dunstan S, Hawn T, Hue N et al. Host susceptibility and clinical outcomes in Toll-like receptor 5-deficient patients with typhoid fever in Vietnam. J. Infect. Dis.191(7), 1068–1071 (2005).
  • Moens L, Verhaegen J, Pierik M et al. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms in invasive pneumococcal disease. Microbes Infect.9(1), 15–20 (2007).
  • Cooke GS, Segal S, Hill AVS et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347(24), 1978–1980 (2002).
  • Khor CC, Chapman SJ, Vannberg FO et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet.39(4), 523–528 (2007).
  • Nejentsev S, Thye T, Szeszko JS et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat. Genet.40(3), 261–262 (2008).
  • Hawn TR, Dunstan SJ, Thwaites GE et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis.194(8), 1127–1134 (2006).
  • Casanova J-L, Abel L. Inborn errors of immunity to infection: the rule rather than the exception. J. Exp. Med.202(2), 197–201 (2005).
  • WHO. Burden of Disease Project. World Health Organization, Geneva, Switzerland (2005).
  • Mizgerd JP. Lung infection – a public health priority. PLoS Med.3(2), e76 (2006).
  • Romagne F. Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov. Today12(1–2), 80–87 (2007).
  • Beutner KR, Tyring SK, Trofatter KF Jr et al. Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. Antimicrob. Agents Chemother.42(4), 789–794 (1998).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov.5(6), 471–484 (2006).
  • Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol.5(10), 975–979 (2004).
  • Liew FY, Xu D, Brint EK, O’Neill LAJ. Negative regulation of Toll-like receptor-mediated immune responses. Nat. Rev. Immunol.5(6), 446–458 (2005).
  • Moore CE, Segal S, Berendt AR, Hill AVS, Day NPJ. Lack of association between Toll-like receptor 2 polymorphisms and susceptibility to severe disease caused by Staphylococcus aureus. Clin. Diagn. Lab. Immunol.11(6), 1194–1197 (2004).
  • Everett B, Cameron B, Li H et al. Polymorphisms in Toll-like receptors-2 and -4 are not associated with disease manifestations in acute Q fever. Genes Immun.8(8), 699–702 (2007).
  • Newport MJ, Allen A, Awomoyi AA et al. The Toll-like receptor 4 Asp299Gly variant: no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis84(6), 347–352 (2004).
  • Ferwerda B, Kibiki G, Netea M, Dolmans W, van der Ven A. The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS21, 1375–1377 (2007).
  • Hawn T, Dunstan S, Thwaites G et al. A polymorphism in Toll–interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J. Infect. Dis.194(8), 1127–1134 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.